3RD EDITION. REVISED \& ENLARGED

With Explanatory Text Br
D? Hermann J. Klein.

Translated Br

Edmund MCCLure ma,mria, el.s.

LONDON:

 Society for Promoting Christian Knowledge, New York: E.\& J.B. YOUNG \& C?1901.

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

STAR

CONTAINING

```
MAPS OF ALL THE STARS FROM 1 TO 6.5 MAGNITUDE BETWEEN THE NORTH POLE AND \(34^{\circ}\) SOUTH DECLINATION，AND OF ALL
NEBULA AND STAR CLUSTERS IN THE SAME
REGION WHICH ARE VISIBLE IN
TELESCOPES OF MODERATE POWERS．
```


WITH EXPLANATORY TEXT

BY
Dr. HERMANN J. KLEIN.

TRANSLATED BY
EDMUND M ${ }^{\mathrm{C}} \mathrm{CLLURE}$ M．A．，M．R．I．A．，F．L．S．

WITH EIGHTEEN MAPS

PRINTED BY E．A．FUNK，LEIPSIC．

THIRD EDITION，REVISED AND ENLARGED．
published under the direction of the general literature committee．

LONDON

SOCIETY FOR PROMOTING CHRISTIAN KNOWLEDGE， northumberland avenue，w．c．；43，queen victoria street，e．c． BRIGHTON， 129 ，мокті street．
New York：E．\＆J．B．YOUNG AND CO．
1901.

SEEN BY

PRESERVATIC
SERVKくごS
DATE

FROM PREFACE TO PREVIOUS EDITION.

D^{E}R. ANDERSON, the discoverer of the Nova in Auriga, and of many variable stars, including the Nova Persei in this year, writing to Nature, February 18th, 1892, says: "You might also allow me to state, for the benefit of your readers, that my case is one that can afford encouragement to even the humblest amateurs. My knowledge of the technicalities of Astronomy is, unfortunately, of the meagrest description; and all the means at my disposal on the morning when I was sure that a strange body was present in the sky, were Klein's 'Star Atlas' and a small pocket telescope which magnifies ten times."

AUTHORS PREFACE TO NEW EDITION.

THIS Edition of the "Star Atlas" has, as far as the text is concerned, been fully revised, and considerably enlarged. Not only are all the objects which are discussed brought into their correct positions for 1900, but the numbering of the nebulæ in accordance with the new General Catalogue has been made an additional feature. Lastly, the number of described objects has been considerably increased, and the results of the most recent investigations and measurements have been fully kept in view. It is not, therefore, too much to say that this "Star Atlas" will commend itself to the many who are now interested in the study of the sublime heavens, as a trustworthy source of information, and as a guide conversant with the latest developments of astronomical science.

[^0]
TABLE OF CONTENTS.

3101 Nebula
3106 ＂．
$\sum 1678$ Double Star
35
3342 Nebula＂
42 Double Star
845．Star Cluster

Corona borealis，The Northern Crown．
（Sheet IV．，V．，VI．）
ェ 1932 Double Star
U Variable
S
η Double Star
≥ 1964 ，
ζ
$\stackrel{\gamma}{R}$ Variable
λ Double Star
S
T Nova
σ Double Star
v Multiple Star

Coryus，The Crow．

（Sheet IX．，X．）

R Variable
δ Double Star

Crater，The Cup． （Sheet XII．）

Cygnus，The Swan．

（Sheet I．，II．，V．，VI．）
β Variable
ϕ Triple Star
R Variable ．
4511 Star Cluster
16 Double Star ．
δ
4514 Nebula
17 Double Star
χ Variable．
4517 Star Cluster
η Multiple Star
ψ Double Star
є Triple Star
4544 Star Cluster
θ^{3} Double Star
P Variable
γ Triple Star
4575 Star Cluster
ω^{2} Double Star
49
4600 Nebula
52 Double Star
T Variable
λ Triple Star
59 Double Star
f^{1} Triple Star
61 Double Star
Nebula
4645 Star Cluster
τ Double Star
v ©
4681 Star Cluster
Nova 1876
μ Quadruple Star

Delphinus，The Dolphin．

（Sheet V．，XII．）

4586 Nebula

β Triple Star
a Multiple Star
T Variable
γ Double Star
4625 Nebula

Draco，The Dragon．

（Sheets I．，III．，IV．，V．，VI．）
2024 Nebula
4029
¿Double＂star
ミ 1984
99
$\stackrel{\eta}{16,17}$
μ
v
$\begin{array}{ll}\gamma & "\end{array}$
4373 Nebula
40,41 Double Star ϕ
$39 b$
4415 Nebula＇
χ Spectroscopic Double
ミ 2403 Double Star
ϵ
Equuleus，The Foal．
（Sheet XII．）
ェ 2735 Double Star
1 Triple Star
2 Double Star
之 2744 ，
γ Triple Star
β Multiple Star

Eridanus，The River

Eridanus．

（Sheet VII．，VIII．）

ς^{2} Eridani

12 Double Star
692 Nebula
709
之 422 D̈ouble Star
32
A
826 Nebula
0^{2} Triple Star
55 Double Star

b \quad| rag |
| ---: |

Gemini，The Twins．

（Sheet II．，III．，VIII．）
1825 Star Cluster ． 31

1360	
η Variable＂．．．． 31	
	32

μ Double Star ．．． 82
15 ＂．． 32
γ Triple Star ． 33
€ Double Star ．． 33
38 ．．． 84
1467 Star Cluster ． 34
ζ Variable ．．．． 34
R ，．． 35
1490 Star Cluster ． 35
1508 ，． 35
λ Double Star ．． 35
δ ， 8 ．35
1534 Star Cluster ．． 36
a Double Star ．．． 36
1549 Star Cluster ． 36
S Variable ．．． 37
κ Double Star ． 37
β Multiple Star ．． 37
π Double Star ．．． 37
T＇Variable ．．．． 37
U ．，．．．． 38

Hercules．

（Sheet I．，IV．，V．，VI．，XI．）

ェ 2007 Double Star	－．	53
κ ，	．．	53
	－．	$5 \pm$
U Variable	．．	54
$30, \mathrm{~g}$ ，	．．	54
m Double Star	．．	54
42 ，	－．	54
ζ＂		54
4230 Star Cluster	（Sheet	
XVII．，XVIII．）	．	55
4234 Nebula	．．	55
ェ 2101 Double Star	．	55
4244 Nebula	．	55
ミ 2104 Double Star	．	55
S Variable ．	．．	55
a ${ }^{\text {，}}$	－	56
δ Double Star	－．	56
4294 Star Cluster	（Sheet	
XV．）	．．	57
68，u Variable	．．	57
ρ Double Star	．．	57
ェ 2190 ，	．	57
83 ，	．	57
玉 2215	．．	58
μ Triple Star	．．	58
4843 Nebula	，	58
95 Double Star	－	58
ェ 2277 \％	．．	59

Lepus，The Hare．
（Sheet VIII．）
R Variable
${ }^{1}$ Double Star
κ
© Triple Star 1112 Star Cluster β Multiple Star α Double Star
45 Multiple Star
γ Double Star

Leo，The Lion．

（Sheet III．，IV．，IX．）
（6）Double Star
1861 Nebula
1863
${ }_{6} 18$ Double＂Star
7
－Spectroscopic Double
R Variable
a Regulus ．
γ Double Star
49
2184 Nebula
2194 ＂，
2203 ＂，
2207
54 Double Star
2279 Nebula
2301
＂
2373 ＂，
2377 ＂，

，Double Star	43
．，	43
88 ，	43
90 ，	43
93	43
β Multiple Star	

Leo minor，The Little Lion．

（Sheet III．，IV．）
R Variable
41
2104 Nebula ．． 41
2178 ，
2274 ，，
2287 － 42

Libra，The Balance．
（Sheet X．，XI．）
μ Double Star
Multiple＇Star
δ Variable
ι Triple Star
S Variable ．
ェ 1962 Double Star

Lupus，The Wolf．

（Sheet X．，XI．

Lynx．

（Sheet I．，II．，III．，IV．）
4 Double Star
5 Triple Star
12
ミ 958 Double Star
14
$\Sigma 1009 \quad$ ．，
玉 1383 ＂
38
1811 Nebula
39 Double Star
41

Lyra，The Lyre．

（Sheet IV．，V．，VI．）
${ }^{a}$ Vega
ϵ and 5 Double Stars
ζ Double Star
β Variable．
447 Ring Nebula（Sheet
XVI．）
Multiple Star
R Variable
17 Double Star ．
${ }_{4}{ }^{7} 82$ Star Cluster
4485
今 Double＂Star

Monoceros，The Unicorn．

（Sheet VIII．，IX．）

4 Triple Star	
5 Red Star	
8 Double Star	
T Variable．	32
1408 Star Cluster	3
1415	32
11 Quadruple Star	32
玉 921 Double Star	
1424 Star Cluster	33
1425 Nebula	83
14 Double Star	3.
1435 Star Cluster	83
£（15）Multiple Star	3
1453 Star Cluster	
1465	
1474	
1483	
U Variable	
1611 Star Cluster	
£ 1183 Double Star	
29 Triple Star	
1637 Star Cluster	

Ophiuchus．

（Sheet XI．）

Orion．		
（Sheet II．，III．，VIIT．）		
（90．）Star Cluster		
100.5 Nebula		
14 Double Star		
$\mathbf{\Sigma 1 . 5 \%}$		
5 ．．		
β		
τ Multiple Star ．		
m Double Star		
η Triple star		
γ Variable．		
ψ^{2} Double Star		
： 1		
A 3 ？		
：$: 3$		
¢ ，		
λ Triple star		
± 747 Double Star		
$\begin{array}{r} 1 \mathrm{~F}: 9 \text { fimat Nehulas } \\ \text { (sheret NVI. } \end{array}$		
1184 sitar C＇luster		
1 Tripucstar		
11．3 Nubula		
119：3 Nıloulat aromma e		
σ Multiple Star ．		
1こご，Nibula		
ζ Tripu Star		
1ここの Nilula		
1267		
52 Double Star		
さ～16		
1310 Star Cluster		
a Yariable ．		
－		
¢ 855	Double Star	
1376	tar Cluster	
1：3＊：		

Pegasus．

（Sheet II．．VI．，XII．）

；Inuhly Star	
1137）	
：	
c ．	
κ	
$\therefore 1$	
83）Triple Star	
87 Double Star	
IN15 Nebula	
EDomble star	
β Variable．	
－以及。	t：1萛

Perseus．

3xis Neloula	
Varial ］star in	
	$\|-1\|+\cdots 1$
$\therefore 1$	
5x！	
Nova Persci	
20 Triple Star	
η Double Star	
ρ Tariable	
$\beta \quad$ ，	
2 ：36：1）ouble star	
R Variable	
Nova．	
717 Ntar Cluster	
＂1）mible star	
－75 Star Cluster	
ζ ）uintuple star	
є Double Star	
xats star C＇lustiof	
14 Triple Star	
820）Star Cluster	
mid	
さ－i．	
m	

Pisces，The Fish．
（Sheet II．，VI．，VII．，XII．
35 Double Star
$\therefore 1$
\therefore
6．1
$161 ;$
－－
＂
ζ
307 Nebula
R Variable
：3：Nibula
＂t lhmile stir

Piscis austrinus，The

Southern Fish．

（Sheet XII．）

Sagitta，The Arrow．

（Sheet V．，VI．，XII．）
：Doubl．Nar
ζ Triple Star
1．520 Star Cluster
1：1）oul）se star
そ＇Triple star
1．7．2 Nehula
Sagittarius，The Archer

IC Mrialid．

1．in1
1：3\％
If Yarialil．
1：3：6 Nar Cluster
1．：

｜｜ 1,1
III．：Nibula－lie．．IVI

21 Duthle Star
1 Vintial．ju．
M 2．）Sitar Cluster
11こ1
112 Ni．anla
Nova 1898
if Double Star
l．ilu Xi．bula
1．）：1；

Scorpio，The Scorpion．

（sheet X．，XI．）

\＆Triule star
β
－Domli，star
1178 Star Cluster（Sheet SVIII．）
in
σ Double Star ． si
t1－：Xidula $\quad \therefore$
＂．Anteres

Scutum Sobieski，Sobieski＇s Shield．
 （Sheet XI．）

Serpens，The Serpent．

，＊heet IT．，V．，X．，XI．）

Sextans，The Sextant．

（Sleet IX．

Triangulum, The Triangle.

(Sheet II., VI., XII.)

```
:3:O}\mathrm{ Nebula
+!-) ,
\epsilon Doulble star
```

Ursa major, The Great Bear.
(Sheet I., II., III., IV.,

Ursa minor, The Little Bear.

(Sheet I., II., IV., V., XIII.)
a Polaris
π^{1} Double Star
4321 Nebula

Virgo, The Virgin.
(Sheet X.)

Vulpecula, The Little Fox.

 (Sheet V., VI., XII.)$\sum 2 \overline{2}+4$ Double Star . 64
6 . 64
fink star C'luster . 6if
11 Nova 1670
1.i: $:$ N Nebula

16 Double Star
4559 Star Cluster
$\Sigma 2695$ Double Star
4591 Star Cluster
R Variable

65
G6
1:if
lifi
$1 ; 7$
65
11.1

- N N

2! !31
-
30:3.)
3049

14
3121
R Variable . . Hi
3132 Nebula
2 1669 Double Star . . 1ti
0. Nobar
$3182, \quad . \quad 46$
3227 • 47
Varial -

є Double Star . . 47
Iriple Star . . 47

- 18
S. . . . 49
$\because 61 ., \quad$. $4!$
84 Double Star . . . 49
-49
3900 Nebula . . . 49
50
+

INTT() 1) (" ('TION.

1.

THE stary heaven seems to an observer to be a hollow sphere of which one-half lies above and
 makr with it a daty revolution around the earth. Th tix the f"sitinn of any if the havenly bodies upon the celestial vault, certain imaginary lines are made use of. The principal lineemployed for this purpose correspond with the parallels of latitude and meridians of longitude upon the sphere of the earth, and give the Right Ascension (longitude) and Declination (latitude) of all heavenly bodies. As the meridians of longitude are reckoned eastwards round the earth from a conventionally fixed meridian (Greenwich), and divide the circumference of the earth into 360°, so the celestial sphere is similarly divided by the meridians of Right Ascension, which start from the first point of Aries, and, reckoned in an eastward direction, divide the celestial equator into 360°. Further, as places on the earth north or south of the terrestrial equator are
 bonlies is reckoned in regrees month or sonth of the celestial equaton th the morthern or sombern relestial prose, which have earh 90 of I herlination. Thus, gust as one is enahled to determine
 celestial sphere the place of a heavenly body by its Right Ascension and Declination.

The term Right Ascension is expressed shortly by R.A., and Declination by D, which hy the addition of the + sign is further meant to designate northerly Decliuation, and hy the sign - sumtherly beelination.

The time required for a complete revolution of the celestial sphere is called a Sidereal day: This diy hewius at the instant in which the first peint of dries passes the meridian of the place of observation. The sidereal day is divided into 24 hours (numbered 1, 2, 3, to 24), each hour into 60 minutes, each minute into 60 seconds.

The sidereal day is $3^{\text {mi }} 55 \cdot 9^{*}$ shorter than the mean solar day, and, therefore, the first point of Aries, or any fixed star, passes the meridian daily about four minutes earlier than it did the day previously. The beginning of the sidereal day is not, therefore, fixed to any definite hour of mean time, but during the year runs through all the hours of the civil day. As the sidereal day is about four minutes shorter than the mean solar day, so the hours and minutes of the sidereal day are shorter than the corresponding periods of the civil day, as this table shows-

Hours.				Minutes.					
Sidereal Time $=$ Mean Time .				Sidereal time = Mran Time.			Sidereal Timu $=$ Mean $\mathrm{Jim} \%$.		
h.	h.	$\begin{array}{r} m 1 \\ \sim 11 \end{array}$	80	m	in.	$5 \text { s. }$	$\begin{aligned} & \mathrm{m} . \\ & 20 \end{aligned}$		\#--
2	1	-1!	[14	2	1	$\cdots!$	31	?! 1	$\therefore 1 \cdot 1$
3	2	59	$\because 1$: ${ }^{\text {a }}$	2)	59.3	411	$\because: 1$	$\therefore \therefore \cdot 1$
4	:	-1!	$\because 1$	\pm	\because	$59 \cdot 3$	50	49	$52 \cdot 0$
5	4	-1.	11	5	4	S! ${ }^{\text {\% }}$	60	5.!	5012
6	5	59	1	6	$\overline{5}$	$59 \cdot 0$			
7	6	58	-1	7	$1 ;$	$58 \cdot 9$			
8	7	58	+1	8	7	$58 \cdot 7$			
$!1$	8	58	31	!1		SS:			
10	9	58	$\because 1$	111	9	-心1			
$\because 11$	19	56	+i,						
$\because 1$			\ldots						

If on any day the tinst print of Aries, of which the R... is. 0 , passes the merilian of an observer at noon, an hour after noon a point of the heaven of R.A. 15° will be on the meridian, after two hours a point of R.A. 30°, after three hours a point of 45 , etc. The Right Ascension of a star, or its distance from the first point of Aries, instead of being expressed in degrees, can thus be indicated by the number of hours, minutes, and seconds which have elapsed from the time of culmination of the first point of Aries until the time this star passes the meridian, or culminates. Thus, instead of expressiug the Right Ascension of the bright star Vega by $277^{\circ} 30^{\prime}$ we may say that it amounts to $18^{\mathrm{h}} 30^{\mathrm{m}}$. For, as 360° pass the meridian in 24 hours, in one hour 15° will pass, and in 1 time minute 15 minutes of are, and in 1 time second, 15 are seconds. Thus $277^{\circ} 30^{\prime}$ turned into time are equal to $18^{\mathrm{h}} 30^{\mathrm{ml}}$.

In many star maps Right Ascension is expressed in degrees of an are only. The practice of astronomers, however, without exception, is to reckon the R.A. in time only. Therefore in the present Atlas the parallels for Right Ascension are given in hours and parts of an hour.

In case it is required to turn time into are measurement, the following table will readily serve the purpose:-

Table for Turning Sidereal Time into Degrees.

	1)egras	Minutes.	Itegreea.		Mi .ntes	Degrer .	
1		m			m.	${ }_{5}$,
1	1.5	1	$1)$	15	$\therefore 1$	7	45
2	: 10	\because	$(1$		3.	8	11
:	45	3	0	45		8	15
4	$1 \mathrm{i})$	4	1	0	34	8	30
i	75	5	1	15	35	8	± 5
i	! 0	6	1	30	36	9	0
7	103	7	1	45	37	Y	1.1
S	120	s	2	11	38	9	30
$!$	135	4	$\underline{\square}$	15	34	9	45
111	150	11	2	$\therefore 1$	411	10	1
11	165	11	\because	45	± 1	10	15
12	180	129	:	0	42	10	30
13	195	1:i	\because	1.5	43	10	45
14	210	14	3	: 3	44	11	0
15	225	1.7	:	45	45	11	1.)
16	240	16	4	0	46	11	30
17	255	17	4	15	47	11	45
18	270	18	4	30	48	12)	11
19	285	19	4	45	49	12	1.)
20	300	20	5	0	50	12	30
21.	315	21	5	15	51	12	45
22	3:30	22	5	30	52	13	1
23	345	23	.	45	53	13	15
24	360	24	6	0	54	13	31
		25	6	15	55	13	45
		26	6	: 11	56	14	0
		$\stackrel{-1}{ }$	6	45	57	14	1.5
		28	7		58	14	30
		29	7	15	59	14	4.1
		30			60	15	

2.

The sidereal day begins, as already mentioned, at the instant in which the first point of Aries passes the meridian of the observer. The sidereal time at any moment is therefore equal to the distance, expressed in time, of the first point of Aries westwards from the meridian; in

Table for Turning Degrees into Sidereal Time．
1）

	11										\therefore		1 i				S			
11	1． 11 11	iI． （1）	h．	${ }^{111}$	12	I．． S	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 110 \\ & 1: \end{aligned}$	$\begin{aligned} & \text { 11, } \\ & 11 \end{aligned}$	$\begin{aligned} & 11 \prime \\ & l_{1} \end{aligned}$	4	$\begin{aligned} & \because 11 \\ & \because \end{aligned}$	11	$\text { "' } \because$	11	418	11	\because		i．
111	$1)$	（1）	11	44	11	15	11	12	11	Eif	1	11	1	4	1		1	$1 \because$		1.
$\because 11$	1	211	I	$\because 1$	1	2 －	I	： 2	1	： 11	1	（1）	1	11	1	1	1	\therefore		，
B\％	$\stackrel{\square}{-}$	11	\because	4	2	8	$\stackrel{3}{-}$	1－	2	$11 ;$	$\underline{-}$	$\because 11$		$\because 1$	1	28	\because	\because		： 1.1
411	\because	111	$\underline{\square}$	11	$\underline{2}$	4	$\underline{ }$	$\therefore 2$	$\underline{2}$	： 11	：	11	，	1	：	8	；	$1 \because$		$1:$
50	\therefore	$\because 1)$	：	$\because t$	：${ }^{\text {a }}$	28	：	：3：	：3	：ili	3	111	\because	＋1	：	15	：	\therefore		\therefore ；
（i）	t	$1)$	4	\pm	4	心	4	12	4	$11 ;$	4	21	t	24	1	$\because 8$	4	32		：, ；
711	1	40	\pm	44	4	48	4	\therefore	\pm	51	5	11	S	1	5	S	－	1－		$1 ;$
80）	5	$\because 11$	－	$\because 4$	5	28	5	$\because 2$	5	$\because 1 ;$	5	． 11	－	＋4	5	48	T	\because		56
！11）	1 i	11	1 i	t	1 i	8	6	1.	6	16	1	211	6	24	$1 ;$	28	，	32		：ir；
1110	$1 i$	411	1.	11	6	48	1 1	I2	1.	56	7	11	7	4	7	8		$1 \because$	7	16
110	7	$\because 11$	$\overline{7}$	24	7	28	7	$3:$	7	811	7	＋11	7	44	，	1	7	\therefore		；
1：41	S	$1)$	8	4	8	8	S	1こ	¢	11i	S	20	8	24	\checkmark	28	\＆	\because	8	36
$1: 30$	S	40	8	$4 t$	K	48	S	－	ぶ	Si；	$!$	11	9	4	！ 1	8	$!$	11	$!$	16
$1+11$	$!$	20	$!$	$\pm t$	$!$	28	！）	$: 3$	！	$\therefore 1 ;$	9	411	9	44	！	48	$!$	$\therefore 2$	！	SH；
1.00	111	0	111	4	10	8	10	12	111	11.	111	20	111	$\because 1$	111	28	111	$\because 2$	11	\therefore
160	11）	40	10	$1 t$	10	4	111	．2	111	Ei	11	11	11	4	11	8	11	11：	，	$11 i$
1711	11	$\because 1$	11	24	11	28	11	：2	11	：36	11	41	11	44	11	48	11	－	1	$51 ;$
180	12	11	1：	4	$1 \because$	8	1：	12	12	119	12	211	12）	－+	12	28	1	32	1	：${ }^{\text {，}}$
190	12	40	1：－	44	12）	48	$1 \because$	－ 2	12	． Si_{6}	13	11	13	4	1：3	8	1：	13	13	16
200	13	21	$1: 3$	24	1：3	28	$1: 3$	： 2	$1: \%$	36	$1: 1$	411	$1: 1$	11	$1:$	48	1\％	－i2	1	
211	14	0	$1 t$	\pm	14	＇	$1+$	12	14	11	14	\because	11	$\because 1$	14	28	14	：${ }^{2}$	，	： 1
2211	$1+$	＋11	14	44	14	IS	14	\therefore	14	50	15	11	1.5	1	1.5	8	1.5	12	1.	$11:$
20	1.7	20	1.	24	1.7	28	1.7	\therefore	1.1	36	1.7	111	1.5	41	1.7	48	1.	\therefore	1.	51
$\therefore+1$	11	11	$1:$	4	$11 i$	S	$1 i$	12	16	$11:$	16	$\cdots 11$	$11 ;$	$\because 1$	$11 ;$	28	$11:$	$\because 2$	1.	$\therefore 1$
250	$11 i$	40	$11 i$	44	16	45	$1+$	号	14	Sti	17	11	17	4	17	8	17	1：	17	$11 ;$
20	17	20	17	24	17	28	17	$\because 2$	17	36	17	41	17	44	17	48	17	$\therefore 2$	17	56
－－	1：	11	1s	\pm	18	K	18	12	1.8	16	1¢	－ 11	1.	$\because 1$	18	28	1ヶ	$\cdots-$	1	
280	1is	40	18	44	18	4	18	52	18	56	$1: 1$	11	19	4	119	8	$1!1$	1－1	1	11.
299	$1: 1$	$\because 11$	1：4	$\because t$	19	28	$1: 1$	$\because 2$	$1: 1$	$\therefore \%$	$1: 1$	411	$1: 1$	＋1	$1: 1$	15	$1: 1$	52	1：	\therefore－
：3111	211	11	$\because 11$	，	20	8	20	12	\cdots	$1 i j$	21	21	$\because 11$	$\because 1$	$\cdots 1$	28	$\because 1$	8．2	－	36
： 10	$\underline{11}$	＋11	$\because 1$	44	$\because 1$	4	20	52	20	56	21	11	$\because 1$	4	$\because 1$	8	$\because 1$	12	$\because 1$	16
$\therefore 21$	21	20	-1	24	21	28	$\because 1$	32	21	36	$\because 1$	（1）	21	44	21	－	$\because 1$	52	21	51
：3：30	$\underline{2}$	0	2－	4	－－	－	29	12	ッツ	11	$\because 2$	$21)$	$2 \cdot 2$	24	\cdots	－	－	\＃i）	－	．．．
$\therefore+11$	\because	10	2：	44	$2 \cdot 3$	1.5	29	\therefore	2－	5ij	2：	11	\cdots	1	$2: 3$	8	$2:$	12	4	$11:$
300	23	211	$2: 3$	24	23	28	23	\therefore	$2: 1$	： $1 ;$	$2:$	41）	－：	11	23	1.8	23	－）	23	514

Minutes

	0^{\prime}		1^{\prime}		\because		$: \prime$		4^{\prime}		5^{\prime}		6^{\prime}		$7{ }^{\prime}$		8^{\prime}		$!1^{\prime}$	
	\cdots	－	I＇	\checkmark	m	8	II．	，	m	i	m	\checkmark	II＇	－	\cdots		，	－	＂	\cdots
11	11	11	11	4	11	к	0	12	0	16	11	\because	11	$\because 1$	11	28	11	\because	11	\because
［1］	11	f11	11	1.4	0	48	11	\therefore	0	56	1	11	1	4	1	A	1	$1:$	I	1.
20	1	\because	1	$\because 1$	1	\because	1	$\therefore \because$	1		1	［11	1	11	1	1	1	\therefore	1	\because
： 11	\because	11	\because	\pm	\because	i	2	1－1	\because	$11:$	\because	211	\because	$\because 1$	2	28	\because	\because	\because	： 1
．111	2	11	\because	11	\because	IN	\because	\therefore－	2	56	．	11	\therefore	1	．	\therefore	． 1	1：3	．	1
－il	\therefore	$\therefore 11$	：	$\because 1$	3	28	3	32	：	\therefore ；	\therefore	． 11	\therefore	11	．	15	．	\therefore	：	\because

other words，it is equal to the R．A．of the point of the celestial sphere then passing the meridian． Conversely，the Right Ascension of a fixed star expressed in hours and parts of an hour is equal to the sidereal time of its passage through the meridian．

In most cases the observer requires to find out the mean or civil time of the place in which he is at the moment when a certain star，whose Right Ascension is given，is on the Meridian．This can easily be ascertained with the help of the following table，which gives the approximate sidereal time of mean noon for every day in the year．If the exact sidereal time be required，the Nautical Almanack for the year must be consulted．

Sidereal Time at the moment of Mean Noon．

象部	感	范	$\underset{\sim}{\text { E. }}$	需	\％	g	咅					亡.	
1	h．m． 18	h．mic		$\begin{array}{ll}\text { h．} & \mathrm{m} . \\ 0 & 40\end{array}$	${ }_{2}^{\text {h．}} \mathrm{m}$	h．${ }_{4}{ }^{\text {m．}}$	b． 6 3 89	h．m．	$\begin{array}{ll}1 . & \mathrm{m} . \\ 10 & 4 \\ 10\end{array}$	$\begin{array}{ll}\text { h．} \\ 12 & \text { m．}\end{array}$	n． 14. 14 14	b． 16 16.	1
，	1849	2051	2－42	04	$2 \pm$	444	643	845	1047	124		16	
？	18 $\mathrm{s}: 3$			048	$2+1$	448	647	849	1051	1249	$1+\mathrm{i}$	1650	
4	18.57	20.8	20	052	\because	152	（1）${ }^{1}$	853	16 A	1253	14 in；	16 it	
－		21 ：	295	11.8	254	456	655	857	1059	1257	15）	1658	
（i）	195	21 T	$\because 58$	11	258	：	659	91	11 ：	131	1.5	172	
7	19	$\because 111$	$2: 31$			5	72		11.7	13	1.7	17 i	
8	$1!11:$	2115	$2 ;$	1 \＆	36	6 is S	－ 1	1	1111	13	1511	1710	8
！	$1!17$	$\because 119$	$23!$	112	310	） 512	－111	！1：3	1115	1313	1.51 .5	1714	4
10	1921	2123	2318	116	3	516	714	！ 17	1119	1317	1519	1718	10
11	198	$21 \quad 27$	$2 \cdot 317$	119	$\therefore 18$	520	718	920	11 2：3	1：3 $\because 1$	1523	1721	11
1：	1929	$21: 3$	$23: 1$	$12:$	：	524	72	924	1127	1325	1527	1725	12
$1: 3$	19 碞	21 ：3，	23.5	127	320	65	726	928	1131	1329	1531	1729	13
14	19 ：	2139	2929	131	$3: 1$	1532	7 7	932	1135	$1: 3: 3$	$1.8: 3$	1733	14
1．）	1940	2143	$2: 3: 3$	135	334	1536	734	！ 36	$11: 8$	1337	1.58	1737	1
16	1944	2147	$2: 37$	1 ：3！	： 37	F 511	738	940	1142	1341	1543	1741	1.
17	1948	21 त1	$2: 3+1$	14.3	341	1 ： 4	742	944	1146	1345	1547	1745	17
18	19 \％	21.4	$\cdots 3$	147	345	5548	$74 i$	948	11 －il	1349	1.551	1749	18
19	19%	21 58	$2: 39$	1 － 1	34.	9 －in	750	952	11 it	13）$\because=$	1.5	17 \％	19
（1）	2011	22.	$2: 3$	155	353	3 in	754	！${ }^{\text {析 }}$	1158	1：3－if	1.559	17	20
$\because 1$	204	220	$2: 35$	1.59	3 \％	－） 5 ！	7 －		122	140	11.	18	21
	$20 \quad 8$	2210		23		63	$8 \quad 2$		126	144	167	1s	
2.	$20 \quad 12$	2214	11	27		\％ $6 \quad 7$	K	108	12111	148	1610	18	2%
24	2016	2218	10 S	$\because 11$		9611	89	1012	1214	1 ± 12	1614	18 1：3	24
25	2020	22.2	（1） 12	215	1 i：	$\therefore 1515$	x $1: 3$	11116	1218	$1+16$	1618		2．）
$\underline{15}$	-211	2226	1） 16	219	417	7619	817	1020	$1 \because \because$	1420	1622	18 21	21
27	2028	2230	（1） 20	223	421	1623	$8 \stackrel{1}{1}$	1024	1226	1424	$16: 6$	18	27
28	2032	$22: 4$	024	226	＋ 2.	－ 627	825	1027	1230	1428	14：30	1828	28
29	20 ： 1		028	230	42	631	829	1031	1234	1432	1634	1832	29
	${ }^{2} 110$		032	－ 3.4	$43:$	15	¢ 33	1035	1238	$1+: 36$	1638	1836	31）
	$\because 1043$		0 OH		4 ： 4		837	10 3：		1440		1840	31

$$
\begin{aligned}
& \text { Sillereal time at mean newn on linh Apmil. . }=1 \quad \therefore \text {; }
\end{aligned}
$$

 this must be subtracted from the result given above. Castor will therefore be on the Meritian an in in $1^{\prime \prime \prime}$.

Constellations and the Names of Stars.

Already in the earliest ages the chief fixed stars had received names, and many configurations, fancifully representing natural or mythical oljects, were grouped into constellations. In the sixteenth century, when more exact information had been ohtained with regard to the southern heavens, constellations were duly marked out there also; nay, even in the last century several new constellations were added to the number, aud introduced into astronomical maps. That there was no great resemblance between the constellations and the objects whose names they bore, it is needless to say. The practice which ohtained in the old star-atlases, of surrounding the stars composing a constellation with an outline of the person or object which the constellation was supposed to represent, was, therefore, purely fanciful. Until quite recently the greatest uncertainty prevailed, not only with regard to the boundaries, but even as to the number of the constellations. It was finally, however, decided that only those constellations should be recommised which

The present atlas will therefore be found to contain only those constellations which are given by Argelander, the fantastic figures suggested by their names being omitted.

The following is a list of the constellations visible from our hemisphere, which :1... to be found in Argelander's Uranometrie.

[^1]Uetus, The Whale.
('ilumba, The Dove.

Corone borealis, The Northern Crown

Crater, The Cup.
Cygnus, The Swan.
Delphinus, The Dolphin.
Draco, The Dragon.

Eridanus, The River Eridanus.
Gomini, The Twins.

Hydra, The Hydra.
Lecerta, The Lizard.
J..... The. Limu

Leo minor, The Little Lion.
Lepus, The Hare.
Libra, The Balance.
Lupus, The Wolf.
Lynx, The Lynx.
Lyra, The Lyre.
Monoceros, The Unicorn.
Ophiuchus, Ophiuchus.
Orion, Orion.
Pegasus, Pegasus.
Perseus, Perseus.
Pisces, The Fish.
Piscis austrinus, The Southern Fish.

Sagitta, The Arrow.

Sagittarius, The Archer.
Scorpio, The Scorpion.
Scutum Sobieski, The Shield of Sobieski.
Serpens, The Serpent.
Sextans, The Sextant.
Taurus, The Bull.
Triangulum, The Triangle.
Ursa major, The Great Bear.
Ursa minor, The Little Bear.
Virgo, The Virgin.
Vulpecula, The Little Fox.

The stars of the greatest magnitude in each constellation were in former times distinguished by individual names. Thus, the star of the greatest magnitude in the Great Dog is called Sirius; the star of the greatest magnitude in the Waggoner is called Capella, and so on. At the present day, however, the individual stars in each constellation are indicated by letters of the Greek or Latin alphabet in accordance with a system introduced by Bayer. Thus Sirius is described as a in the Great Dog, Rigel as β in Orion. The lesser stars are generally indicated by the numbers assigned to them in a catalogne, in which their positions are given by their Right Ascension and Declination. The catalogue most generally in use for stars which are visible to the naked eye, is that of the second edition of Flamsteed's Historia Colcstis, which appeared in 1725. The figures affixed to the majority of the stars in the present work are those of Flamsteed. At the same time, there are many stars faintly visible to the naked eye which have not been catalogued by either Bayer or Flamsteed. These stars are to be found in other catalogues, but they are not specially numbered in this Atlas, except where they occur in Struve's catalogue of double stars. In the case of these stars, the number assigned to each in Struve's catalogue has been inserted, the letter Σ being prefixed.

Magnitude of the Stars.

The stars are divided into various classes of magnitude according to their apparent brilliancy; thus, the most brilliant stars are said to be of the first magnitude; the least brilliant of those that can be discerned by the naked eye on a clear night are said to be of the sixth magnitude. The arrangement of all the stars visible to the naked eye into these six magnitudes is principally based on the estimates formed by Argelander, Heis, Behrmann, Gould, and Houzeau. Light measurements recently carried out by the aid of photometrical apparatus have proved that the estimate of magnitudes by Argelander's method is fairly trustworthy, and that in general, for the stars visible to the naked eye, each succeeding magnitude after the first indicates the possession of two-fifths of the light of the preceding one.

By the aid of the telescope, and according to its optical powers, stars of still lower magnitude become visible. According to test experiments, a telescope with an objective glass of $\frac{1}{2}$ inch aperture will show stars of the 7 th magnitude; an objective of 1 in ., stars of the 9 th magnitude; one of 2 in ., stars of $10 \frac{1}{2}$ magnitude; one of $3 \mathrm{in} .$, stars of the 11 th magnitude; one of 4 in ., stars of $11 \frac{1}{2}$ magnitude ; of 5 in ., those of the 12 th magnitude ; of C in., those of $12 \frac{1}{2}$ magnitude, etc.
 very uncertain. Thus, Struve designates the faintest companions of double stars which he could see through the 12 -inch refracting telescope of Dorpat as of the 12 th magnitude, which accordin' 10 Argelander's scale would be of the 1 th magnitude, and judged by John Herschel would he classified with stars of the 20th magnitude. These discrepancies among olservers are no: perceptible in regard to stars up to the 10 th magnitude, and they may therefore be di-m $-11 / \mathrm{l}$: by olservers who employ telescopes of only moderate power.

Number of Fixed Stars.

The most cursory survey of the heavens shows that, grenerally, the fainter the -1.11 are, the more numerous they appear. From Argelander's observations it appears that in the celestial sphere north of the equator there are-

Stars $9 \cdot 1$ to 95 Magnitude $=21397 \%$.
Beyond the 9.5 magnitude the stars increase in number so much that it is no longel
 uphe whe star maps the faintest stans, has in the mean time leal th the emplerment at photography for the purpose, and as a result we are now able to map out the celestial space: and to give therein stars which approach and even exceed the visibility in our greatest telescopes.

The first experiments in this line attended by successful results were carried out at the Paris Observatory by the brothers Henri. With the aid of an object-glass of 6 in . aperture, expressly constructed for this purpose, they were able to photograph several star clusters, in
 led to the construction of a larger instrument of 3 ± 0 millimetres aperture and 3 to \pm matom
 to keep one and the same point of the heavens continually in the field. The result surpassed all expectation, for stars up to the 16th magnitude were successfully photographed-stars which
 one might say, in the proper sense of the word, was an astronomy of the iavisible; and it musi have been with a peculiar joy that the observers saw upon the photographic plate pictures of stans which since the heximing of things had never beem revealed to haman ery. In wher th photograph such faint stars long exposure was necessary, namely one hour and tweuty minutes, while stars of the first magnitude gave forth their image in the 200th part of a second. The result of the labours of the brothers Henri led to the passing of a resolution at the Astro-physical Congress in 1887, at Paris, by which it was agreed to undertake a complete photographic survey of the heavens. This enormous undertaking, whose accomplishment was
 in an advanced state of progress. By means of photographic telescopes of exactly similar capacities, and by the employment of identical methods, all stars from the 1 st to the 13 th magnitude were brought under observation, and a catalogue undertaken of stars between the 1 st and 11th magnitude the latter being determined by appropriate methods. Each plate embracin

 to some thirty millions.

Variable Stars.

Certain fixed stars exhibit a periodical change in their brightuess, which in some cases occurs with great regularity, but in the majority of instances more or less irregularly. The first discovery of this variability was made by David Fabricius in the year 1596, in the case of the star o in the Whale. This star appeared on the 13th August of that year to be of the 3rd magnitude, whilst in the October following it was no longer visible. That this was a case of variability was first recognised by Holwarda in the year 1636, and the star received, therefore, the name Mira, the wonderful. Since this time numerous variable stars have been discovered, the latest list, drawn up by C. Pickering, embracing somewhere about 200. According to the kind and manuer of variability, these stars have leeen divided into five classes.

1. The so-called new stars (Novae) which burst out suddenly and vanish away slowly.
2. Stars of great variability within the space of several months. These stars vary by several magnitudes, being often visible in maximum to the naked eye, whilst in minimum they are frequently not within the scope of powerful telescopes (Mira type).
3. Stars of slight and irregular variability which have no recognisable fixed period.
4. Stars of fairly regular variability whose periods are of a few weeks only (Lyra type).
5. Stars whose variability is confined to a few hours, and which shine during long periods with a constant light (Algol type).

In the lists and upon the star maps the variables are distinguished by the letter R, provided they had not already been indicated by Greek letters before they were found to be variable.

The cause of the variations in light inteusity in such cases as those of the Algol class is recognised to be owing to the passage across the dise of the chief star of a dark, or, at least, a less bright planet. The case is similar to that of a partial eclipse of our own sun. We owe to the spectroscope the correct determination of the cause at work in such cases. In the case of variable stars of the Lyra type also, the presence of a relatively dark companion is the recognised cause of variability. The cause which produces the variability of stars belonging to the Mira type is unknown. As to variables whose changes are slight, and of irregular periodicity, we may assume the formation and dissolution of spots on the surface of these bodies to be the cause of the phenomena. As to the so-called new stars (Nova) their sudden outbursts of light are doubtless closely associated with great cosmic revolutions. Perhaps they are to be ascribed to the collisions or near approaches of cosmic masses to one another. In any case, the researches of Professor Seeliger, which led to his regarding each of such outbursts as a world catastrophe, are worthy of consideration.

Distances of Fixed Stars.

The distances of the fixed stars from our earth are without exception so considerable that up to the present it has been possible only in a few instances to obtain a substantial value for their parallax. From this it appears that even the nearest fixed star is still four billions of miles away, and one must conclude, on the ground of analogy, that the faintest stars which can be seen by the improved telescopes of to-day are many hundreds, or even thousands of billions of miles distant.

Double Stars.

If one survey the heaven with a telescope one frequently observes twin stars which lie so near to each other that they can be separated only by a glass of a very high power. These are

 to the primary is expressed by distance (d.) and position angle (P. .).

By distance (d.) is meant merely the apparent space which separates the companion
 almost the same line in regard to the spectator, while their real distance from each other
 propincuity. In these cases the position angle varies in such a manner as to indicate a motion of revolution round a common centre. Such Double Stars are called physically connected in opposition to those which are merely associated visually.

The position angle (p.) is the angle which a line drawn from the companion to its primary forms with the latter's circle of Declination. The position anyle is calculat $\cdots /$ trom north throngh ast low suth and west.

The number of I ouble Stars is considerable, about 11,000 being known at the present time. There are also triple, quadruple, and quintuple stars, but their number is not large.

The primary and companion are not infrequently of different colours; white and blue, yellow and blue, and green and blue stars being found together. Except in a few cases, however, these colours are only faintly visible, and it requires a certain amount of practice and a powerful telescope to be able to distinguish them.

By the application of very powerful instruments, and especially owing to the labours of Burnham in this connection, it has been determined that a considerable number of the brighter stars have each a close companion much less bright, and the visual angular distance between them is in many cases less than $0.5^{\prime \prime}$. Such Double Stars can be perceived ("separated") only in the most powerful telescopes. Where the visual distance is still smaller (under $0 \cdot 1^{\prime \prime}$), our strongest instruments eren are at fault. Here again the spectroscope offers its aid, furnishing evidence, by the displacement or periodical doubling of the lines of the spectrum, that the object with which we are dealing is not the single body which it appears to be but, in reality, two stars. These objects are, indeed, "spectroscopic double stars," and it is remarkable that the period of revolution of these dual bodies round their common centre of gravity amounts to only a few days or weeks. We shall, doultless, discover by the future spectroscope Double Stars of a longer period of revolution, and thus establish a relationship between the latter and the optical Double Stars whose companions do not complete their period of revolution in less than some years.

Star Clusters.

Groups of stars collected more or less closely together in a small space are called star clusters. Some few star clusters can be distinguished, though imperfectly, with the naked eye, as, for instance, the Pleiades in Taurus and a cluster in Cancer, but generally they can be clearly seen through the telescope only. Indeed, many of them appear misty and nebulous even in telescopes of ordinary size, a powerful instrument being required to resolve them. Most star clusters seem to be globular in shape, with a strong condensation
 together that they seem a nebulous mass, around which the exterual stars are collected.

The relative positions of the various stars in these star clusters have been decided
 the application of photography to astronomical observations lead us to hope that we shall long be able to obtain records of their most minute details. We shall thus hy the comparison of photographs taken at intervals of sufficient time, arrive at valuable informatiou with regard to the relative motions of the component stars of these cluster:

Nebulæ.

Nebulæ are among the most remarkable objects to be found in space, but the majority of them cannot be studied in detail except by the aid of the most powerful telescopes. At the present day upwards of 8000 nebulæ are known to astronomers. John Herschel prepared a general catalogue containing 5079 nebulæ and star clusters. For the sake of brevity the nebulre are usually distinguished by the numbers assigned to them in Herschel's catalogue, and this course has been followed in the present work, where the numbers are accompanied by the letters G. C. (General Catalogue).

Dreyer drew up later on a still more comprehensive catalogue, each of the objects embraced within it being distinguished by a number. In the following text the numbers from Dreyer's Catalogue are appended in brackets to those taken from John Herschel's List. From the most recent results obtained hy the photography of the heavens, the number of these cosmical clouds turns out to be much greater than had been previously supposed. According to Keeler, it is possible to distinguish some 100,000 nebula more than had been previously perceived, yet by far the largest number of these new discoveries are only apparent on the photographic plate, and then only after hours of exposure.

While most nebulæ cannot be clearly observed except with a powerful telescope, there are several hundreds, however, which may be studied on a clear night with an ordinary glass, if the weakest power be employed. Viewed in detail, it will be seen that their shapes are various; some round or elliptical, some spindle-shaped, some like planetary dises (Planetary Nebulw), others ring-shaped (Annular Nebulce), others spiral (Spiral Nebula), while many are quite irregular in outline.

The spectroscope shows that the nebulæ are masses of incandescent gases in which hydrogen plays an important part. Possibly in these glowing masses we have before us the germs of future worlds, or it may be in some cases the disintegrated remains of former solar systems.

Explanation of the Maps.

The general maps in this Atlas include that portion of the heavens which is visible in Central Europe, and they cover as far as 33° South Declination. The stars are divided by a system of conventional signs into six classes of magnitude according to their apparent brilliancy. The system of numbering adopted is, as a general rule, that of Bayer, by means of the small letters of the Greek and Latin alphabets. Such variable stars as are not given by Bayer, are marked, as is usual, by the capital letters of the Latin alphabet, beginning with \mathbf{R}, the word yar being added. A number of especially interesting variable stars, which at their maximum do not attain to the sixth magnitude, are also given. These stars are distinguished by a small circle. Stars catalogued by Struve as double stars, if they have not been noted by Bayer, bear the number they possess in Struve's catalogue, with the letter Σ prefixed; all other numbers attached to stars are those of Flamsteed's catalogue.

Star clusters and nebulæ are distinguished by small circular groups of dots, and the accompanying number is that assigned to each in Herschel's General Catalogue, the numbers in Dreyer's List being added in brackets []. Lastly, the boundary lines of the barions constellations are taken from Arselander.

Description of the more interesting Fixed Stars, Star Clusters, and Nebulæ contained in the Maps of this Atlas.

 time of each object upon the Maps. To find in this list any star or nelula contained in the Maps, it is only necessary to take the approximate Right Ascension of the olject from the Mars, and also its mamber or letter. These will indicate, withont tmonhle, the whi.. in the descriptive Catalogue. The Right Ascension and Declination here given are those for the

 panion of 10 mas. burnhan, whe whenvel this tim with the lis-ing refractor at Chicago, states that he saw more than a dozen very faint stars nearer to the primary than this companion. The spectrum of B shows teeble but strongly broalened lines, which, actomding to Vorsh, indiatu. peculiar conditions of pressure and temperature in this star. The magnesium line ($\lambda .4480$) is also manifest.

 variable.
 at 11% " distane Persition angle, live. Nor thaner in the praition of the companion has been observed.

Tr Cassiopeiae. A red-coloured star, found to be variable by Krüger in 1870. It varies from about 7.5 mag , at maximurn to 11 at minimum. The period of variation is about 445 days.
R Andromedae. A variable star with a period of about 411 days, noted as such by Argelander in 1858. It is of a rich orange colour. Its magnitude at maximum is $5 \cdot 6$, and at minimum it is invisible, even with a most powerful thesenn.
S Ceti. This star was found to be variable by Borelly in $18 \% 2$. It varies from 8 mag. to 11 mag. Its supposed period of 320 days is very uncertain.

Place of the New Star in Cassiopeia, which Tycho observed from
 list of all the stars in the neighbourhood of Nova, with the aid of the
 in his Chart, which may appear within a radius of 10^{\prime} from the place of Nova, may be considered as either new or variable. D'Arrest's Chart will
 is 8.9 mag ., the faintest 16 mag . A photographic survey of this region made by J. Roberts in 1889 gives no indication of Nova.
$112 t+3411$
63 (129), Star Cluster in Cassiopeia. The stars composing this

Ripht Ascrnslon. 1900.	Declination, 1900.	
h. m.	0	-
11 26 +60		

scattered. The cluster is nearly round in shape, and is from 15^{\prime} to 20^{\prime} in diameter. Near the centre may be seen a star of 8.5 mag ., and one or two others of 9 mag . ; the rest are fainter, some of them being scarcely visible.

68 (136), Star Cluster in Cassiopeia, is about 1^{\prime} in diameter, and rich in very minute stars. Discovered by Herschel 26 Nov., 1788, and described by him as but little removed from a resolvable nebula. The stars are densely massed together towards the centre of this cluster, which is globular in shape.

51, Piscium, ($\mathbf{\Sigma} 36$) 5 mag., has a companion of 9 mag. at $27^{\prime \prime}$ distance. No change has been observed in the position of this latter since the first accurate measurement.

55, Piscium, ($\mathbf{\Sigma} 46$). A double star. The primary is 5 mag., and yellow in colour. The companion at $6^{\prime \prime}$ distance is 8 mag. and of a deep blue colour. Two very beautiful stars.
a Cassiopeiae, ($\mathbf{\Sigma} 45$). A reddish-coloured star, 22 mag., found to be slightly variable by Birt and John Herschel in 1831. It has a companion 9 mag . at $62^{\prime \prime}$ distance.

116 (22t), The Great Nebula in Andromeda. In fine weather, if there be no moonlight, this nebula can be clearly seen with an opera-glass. It is mentioned as early as the tenth century by the Persian astronomer Sufi. In the West it seems to have been first noticed by Simon Marius, 15 Dec., 1612. On examining it with the naked eye it appeared to him to be merely a small cloud, and on applying the telescope he could discover no evidence that it was of a stellar nature ; it seemed nothing more than a patch of whitish light of greater brilliancy at the centre and fainter at the edges. Marius compared it to a light seen from a great distance through some semi-transparent medium. Halley described the nebula as triangular, but Messier contends that it is formed in the shape of two luminous pyramids applied on opposite sides of a common base, the diagonal passing from apex to apex pointing from N.W. to S.E. The distance between the apices is two-thirds of a degree, and the length of the common base one quarter of a degree. Messier saw no star in the nebula, but noticed an increase of brilliancy towards the centre. Later on F. W. Herschel examined the nebula through his great telescope. The luminous central portion he, too, found to be of a nebulous character, but with indications of its being resolvable into separate stars. The middle, or the so-called nucleus of the nebula, has not a starry appearance, but viewed through a very powerful telescope it has a certain flaky look, which confirms Herschel's opinion of its stellar character. Finally, an examination made in 1848 , with the aid of the great refractor at Cambridge (U.S.A.), proved the existence of upwards of 1500 minute stars within the nebula, while the nebulous character of the whole was still apparent. Two thin, dark parallel streaks, somewhat like two cracks, were found to run through the mass of stars, and have since been noticed by other observers. In the spectroscope this nebula gives clearly a continuous spectrum, thus proving that it is not a mass of incandescent gas, but rather a highly condensed star cluster.

With a powerful glass several faint stars may be seen scattered up and

 of August, 1885 , a star of 6.5 mag. suddenly appeared near the centre if the nebula which gave a continuous spectrum containing, probably, a fers bright lines. By the middle of the following September it had dwindled down to 8.5 mag., and in the summer of 1886 had disappeared entir. 1. even the great refractor at Washington failing to discover it. This new star was not, probably, a condensation of the central portion of the nelml.,
 always been in the place where it appeared, and is one of the countl.... faint stars observed there by Bond. The sudden increase in brilliancy which took place towards the end of August, 1885, was probably not owing Lo a weat emption of incamkeseent gats, hat rather to other cireum-inners Of the various possible theories, that which attributes the phenomenon to the conversion of cosmic motion intu heat and light seems the most probable. Roberts' photograph, taken in December, 1888 (four hours' exposure), gives clearer details than any previously attained. From these it appears that this nebula is in reality a flat spiral, placed obliquely to the line of sight, with a whomlar mass in its centre. Later phomeraphir surveys have confirmed this view.

117 (221), Companion of the great Nebula in Andromeda. Viewel through a telescope of low power, this has the appearance of a nebulous star. In reality it is at star cluster, hat a very $\mathrm{l}^{\text {mowerful }}$ instrument i-

120 (225), Star Cluster in Cassiopeia. Discovered by Caroline Herschel. The stars are scattered somewhat coarsely over a space of from 15^{\prime} to 20^{\prime} in diameter, and range from 9 to 10 mag.

138 (253), Nebula in Cetus was discovered by Caroline Herschel, Sept. 23,1783 ; it is long, narrow, and bright, and is preceded by a star of 9 mag.
η Cassiopeiae. A yellowish star, \pm mag, with a purple-coloured companion of 7.5 mag., discovered by Herschel, 17 Aug., 1779. The distance of the companion in 1882 was $5 \cdot 2^{\prime \prime}$; the position angle 165.7°; the time of revolution round its primary as calculated by Dunér is 176 years: the parallax, according to Clausen, is $0.371^{\prime \prime}$, indicating a distance from the earth of eleven billion miles.

65, Piscium. A double star, discovered by Herschel in 1783. Both stars are of 6 mag., and their relative position does not seem to vary. Distance $4^{\prime \prime}$.
fifi, Piscium. Reewnised as at domble star at loulkwa, the primary
 to be $0.6^{\prime \prime}$. Dembowski, in 1885 , could only perceive a single star of elongated form. Burnham, in 1891, found the companion's distance to be $0 \cdot 4^{\prime \prime}$. The velocity of revolution of the companion is very high.
γ Cassiopeiae. This star, is mass, hats it comprainn of :1 mat... at
 stars nearer to the primary, but they can only be seen with a telescope of the highes power. In the spectrum of the primary the hright hydrwien

	$\begin{gathered} \text { tight } \\ \text { ension } \end{gathered}$ 900.	$\begin{aligned} & \text { Ireclination. } \\ & 1900 . \end{aligned}$	
	m.		
11	il	$+37$	is
	i3)	$+s 1$	21
11	i!	+ 11	50
1	11	$+\because 11$	Sif
1	1	$+ \pm$	$\because \because$
1	4	-10	4.
1	6	+ 30	53
1	8	$+24$:
1	9	$+7$	3
1	12	$+72$,
1	13	+ 27	48
1	15	-1	2
1	22	+ 88	46

line appears as a projecting knot of light, from which Prof. Scheiner concludes that this star has a very extensive atmosphere of glowing hydrogen, and a relatively small nucleus.
μ Andromedae. A double star of 4 mag. and 9.5 mag., first recognised as such by John Herschel. The distance of the companion is $30^{\prime \prime}$.
U Cephei. A variable star of the Algol type, discovered by Ceraski in 1880. The star is generally $7 \cdot 1$ mag., but diminishes to 9 mag . in periods of 2.5 days. With a powerful telescope, two faint companions, of 11.5 and 13 mags. respectively, may be seen.

26, Ceti. A double star. Primary 6.5 mag., companion 9 mag.; distance $16^{\prime \prime}$; position angle 252°. The position of the companion does not seem to vary.
ψ^{1} Piscium. A double star, consisting of two white-coloured stars of 5 mag.; distance 30". They can be easily "divided" with the help of a pocket telescope. No change has been observed in their relative positions during the last 130 years.

77, Piscium. A beautiful double star; primary 6 mag., companion 6.8 mag. ; distance $33^{\prime \prime}$. No change has been observed in their position.
η Ceti. A yellow star of 35 mag., with a companion of 9.5 mag . $\mathrm{d} .=225^{\prime \prime}, \mathrm{p} .=305^{\circ}$.
g Piscium. Recognised as a double star at Pulkowa. Primary 5 mag., companion 10 mag. ; distance $25^{\prime \prime}$.
ϕ Piscium, 5 mag., with a faint companion 10 mag. at $8^{\prime \prime}$ distance ; position angle 228°. Piazzi calls it a double star, but it is quite evident that his telescope would not have enabled him to see it had it been as faint then as it is at the present day.
ζ Piscium. A beautiful double star, easy to observe, the primary and companion being 4.5 mag. and 6 mag. respectively. The distance and position angle have not undergone any essential alteration since Struve measured them in 1821, the former being $24^{\prime \prime}$, the latter 64°. Burnham found in 1889 that the companion itself is double, consisting of stars of $5 \cdot 3$ and 11 mags. respectively; $\mathrm{d} .=0.9^{\prime \prime}$.
.S Cassiopeiae. A variable star of long period, red, discovered by Argelander in 1861. At maximum it is 6.7 mag., though it is often less than 8 mag. ; at minimum it is under 13 mag., or it becomes quite invisible. The period is 610 days.

256 (457), Star Cluster in Cassiopeia. A large cluster, rich in stars and nearly round in shape. The stars range from 7 to 10 mag . Discovered by Herschel, 18 Sept., 1787. There is a double star in the cluster of 8 and 9 mags.

42, Ceti. A double star, 6 and 7 mag. Distance only $1^{\circ} 4^{\prime \prime}$, p. $=339^{\circ}$.
a Ursae Minoris, the Pole Star, 2 mag.; gives a yellowish light. It has a companion of 9 mag., distance $18.5^{\prime \prime}$, which was discovered by Herschel, 17 Aug., 1779. According to Peters' calculation, its parallax is $0.08^{\prime \prime}$, indicating a distance from the earth of 40 billions of miles, but this result is very untrustworthy. Campbell discovered at the Lick Observatory that \boldsymbol{a} itself is a spectroscopic double star. The

 therss.

 to divide this latter into two separate stars of 8.9 and 9.5 mags. respectivels, distance $3^{\prime \prime}$. Burnham saw also a companion of 1.3 mag . at $\mathrm{d} .=2 \cdot 9^{\prime \prime}$, p. $=42^{\circ}$.
307 (524), Nebula in Pisces. A bright and fairly large nebula, with an increase of brilliancy towards the centre ; 4 stars near to it.
(0, a star of $5: \%$ mar. wilh twin companions of $11: 5$ and 10.5 matz. respectively, the latter, as Burnham discovered, being itself a close double.

R Piscium. A rariable star of yellowish colour with a long period discovered by Hind in 1851. At maximum it is from $7 \frac{1}{2}$ to $8 \frac{1}{2}$ mag., al minimum it is as low as $12 \frac{1}{2}$ mag.; it gains more quickly in lrilliancy than it loses, and the period is 344 days.
$3+1$ (581), Star Cluster in Cassiopeia. This is not a very large cluster, but it contains several stars of 6 to 9 mag., among others a redcoloured star of 8 mag., and a double star, primary 6 mag., companion 10 mag., distance $14^{\prime \prime}$. towards the centre. Discovered by Herschel, 10 Sept., 1785.
352 (598), Nebula in Triangulum. Discovered by Messier; very large and faint, but easy to observe in consequence of its extent. With a seven-foot telescope Herschel saw it dimly, and best with a low power. With a ten-foot reflector, the most hrilliant part was resolved into separate stars, and when a still stronger instrument was employed, almost the whole nelula was resolved intu stats, whirh seemed th Herochel methime mome than the smallest imaginable points. This nebula is nearly 30^{\prime} in extent. Lord Rosse observed in it nodes of light, and the well-known spiral arrangement shown by his telescope in several similar oljects.
361 (613), Nebula in Cetus. Discovered ly Herschel 9 Dec., 1798. This nebula is fairly brilliant, with a brighter nucleus, and is 6^{\prime} long by $1 \frac{5}{3}^{\prime}$ broad.
372 (628), Nebula in Pisces. Discovered by Méchain in Sept., 1780, and described by him as a starless nebula of fairly large dimensions, but very faint and difficult to observe. Messier confirmed this view. Sir John Herschel, on the other land, describes it as a globular star cluster, capable of being clearly resolved into separate stars, whose brilliancy increases gradually at first, and then suddenly at the centre. Lord Rosse, with the help of his great telescope, detected a spiral arrangement of the stars.
Vogel saw it in October, 1867, with the 8 -inch refractor at Leipsic,
 donsely wellowed howads the cemte:
385 (650), Nebula in Perseus. The preceding of two nebule, which

it to consist of small stars, intermingled with nebulæ; this, however, was a mistake. The nebula is fairly brilliant. Rosse recognised this object as a spiral nebula.

392 (663), Star Cluster in Cassiopeia. A beautiful object, 15^{\prime} in diameter, rich in stars, ranging from brilliant to faint minute points; a double star, primary 9 mag., companion 10 mag., distance $8^{\prime \prime}$, is to be seen in the cluster; also a red-coloured star 8 mag. in the southern portion.
χ Ceti, 5 mag.; at distance 3^{\prime} stands a star of 7 mag.
422 (700), Nebula in Triangulum. In this Herschel, 4 Sept., 178t, discovered four separate starry nebula, three standing in a line, the fourth at right angles to them ; that at right angles is much the largest. D'Arrest observed these nebulæ afterwards. According to Lord Rosse, there are three others near them, but Dreyer thinks these to be identical with those observed by Herschel.
γ Arietis. A beantiful double star, primary 4.2 mag., companion 4.4 mag., observed by Hooke in 1644, and described by him as remarkable in the highest degree. It can be divided by the help of a small telescope : distance $8^{\prime \prime}$, position angle 179°. There is besides, at distance $224^{\prime \prime}$, position angle 84°, a faint star, first seen by J. Herschel and South in 1823. Burnham, 1878, discovered that this star is also double (8.9 and 13.2 mags.), but its division is extremely difficult. Between it and γ he saw another very faint star.

457 (752), Star Cluster in Andromeda, 30^{\prime} in diameter, containing numerous brilliant, coarsely scattered stars, visible to a keen eye without the aid of a telescope as a nebulous star. Herschel first observed it 21 Sept., 1786.
λ Arietis. A double star, discovered by Chr. Mäyer, primary 5 mag., companion 8 mag., distance $38^{\prime \prime}$, can be divided by a good pocket telescope.
$\Sigma 196$, Arietis. A triple star, primary 8 mag., companions 10 and 11 mags. respectively. The hrightest companion is at distance $3^{\prime} 4^{\prime \prime}$, position angle 0.8°.

Variable Star in Perseus. Mrs. Fleming found upon star photographs taken at Cambridge in 1887, a star of the 9 mag. in this place giving lright hydrogen lines in its spectrum. This star appeared weaker in subsequent photographs, and vanished altogether before the end of 1887. Even in photographs of the region taken in 1885 and 1886, there is no record of this star. It is a matter of uncertainty whether this is the case of a Nova, or of a variable with a very long period.
a Piscium. A beautiful double star, primary (which is green in colour) 2.8 mag., companion (which is blue in colour) 3.9 mag., distance $3^{\prime \prime}$. The movement of the companion is very slow.
₹ Trianguli. This star, 5.5 mag., has an exceedingly faint companion, distance $4^{\prime \prime}$, position angle 120°. It requires a very powerful instrument to distinguish this companion.
1 is +11 in
γ Andromedae. A gold-coloured star, 3 mag., with a blue companion, 6 mag. Distance $10^{\prime \prime}$. The colour of both stars is very intense, and they are uasily recognised as a domble star. In 1sto, however, Struse discovered

 1890 Burnham himself could not detect the companion with the 30-inch
 perioul of revolution is sume ons seats.

14, Arietis. A triple star; the primary 5.6 mag., has at distance 93", position angle 36.4 , a companion 8.9 mag, and a second 7 mag., at distance $106^{\prime \prime}$, position angle 2785^{5}. Herschel had measured the distance of the nearer companion in 1783 .

6, Trianguli. A douhle star, primary (which is yellow) 5 mag., companion (which is blue) 6 mag., distance $3 \cdot 8^{\prime \prime}$. Discovered by Herschel in 1781.
R Arietis. A variable orange-coloured star, discovered at Bonn in 1857, and since then frequently observed. The period is 186.6 days. At
 When approaching its maximum the increase in brilliancy is often for weeks together very slow.

512, 521 (869, 884), Two large Star Clusters in Perseus, being one of the most magnificent objects of its kind in the heavens. The larger of
 ranging in magnitude from 6.5 to 13 and 14 . Vogel and Lamont have measured this cluster with the micrometer. The southern cluster (h) is smaller, being 15^{\prime} in diameter and less rich. The stars appear condensed towards the centre. Photographs have been taken of both clusters by the brothers Henri at Paris, Dr. Lohse at Potsdam, and others.
o Ceti (Mira). A variable star with long period, and the first whose variability was detected. D. Fabricius observed it early on the morning of 1: Ananst, 1 Smi, as smmewhat hrimhter than a Arimis. In Octmber it had disappeared. He saw it asain in Felmaty amb Mardh, liw! ; then Holwarda observed it in 1638 , and recognised its periodical variability. According to Argelander's calculations the period is $331 \frac{1}{2}$ days, but it is very irregular, and the difference of period is sometimes as much as 25 days. Its magnitude at maximum also varies greatly, being sometimes as much
 magnitude as that of a companion at distance 2^{\prime}, position angle 85°. The star is of a deep red colour, and gives an interesting spectrum : four bright hydrogen lines are visible in it, also numerous dark carbon lines, and in the red end dark bands. Campbell discovered irregular shifting of the bright lines, the cause of which remains yet to be determinel.

527 (891), Nebula in Andromeda. Fairly brilliant, 15^{\prime} long by 3^{\prime} broad,
 1783. According to John Herschel, it is a vast, Hat, nebular ring, which is seen obliquely by us.
©Cassiopeiae. A triple star, discovered by W. Herschel. The primary $t 2$ mag. has one companion $7 \cdot 1$ mag., distance $22^{\prime \prime}$, and a second companion 8.1 mag., distance $7 \cdot t^{\prime \prime}$. The nearer companion is not easily distinguished.

$\begin{gathered} \text { Reght } \\ \text { Ascension. } \\ 1900 . \end{gathered}$	$\begin{gathered} \text { Declination. } \\ 1900 . \end{gathered}$
$\begin{array}{ll} \text { h. } & \text { n. } \\ 2 & 21 \end{array}$	- 038
$\because 2: 3$	- 1 洊
231	+ 510
231	$+2413$

" $\because 4+\therefore 3 \quad \therefore$
$235+21 ; 3!$
$\because \quad \therefore 7+48 \quad 48$
$\because \quad 313+4221$

$\because: 38+\ddot{-} 4!3$
$\because 41-80$
$2+3+3.3$
$\because 43+176$
$244+17: 3$
$\because+t+\ddot{0} \quad i 1$
R Ceti. A variable star, first recognised as such by Argelander, 1866. At maximum it reaches sometimes 7.5 mag., at minimum, 13 mag . Period, $16 i^{\circ}$ days.

544, Planetary Nebula in Cetus. Rather faint, with a diameter of from 3^{\prime} to 4^{\prime}; there are several stars round it. Discovered by W. Herschel 6 January, 1785.
v Ceti. A double star, 5 mag., with a faint companion of 9.6 mag. Distance $7.7^{\prime \prime}$; position angle, 83°. No change in the position of the companion has been detected.

30, Arietis. A beautiful double star, not difficult to observe. Its primary is 6 mag.; companion, 7 mag .; distance, $38 \cdot 6^{\prime \prime}$. Both stars are white in colour. No change in position has been noticed since the time of Bradley. 575 (1023), Nebula in Āndromeda. Faint, 5^{\prime} in length, spindleshaped, and surrounded by several faint stars.

33, Arietis. A double star, first seen by Herschel 27 September, 1779. Primary, 5.8 mag.; companion, 8.7 mag.; distance, $28.5^{\prime \prime}$; position angle, 359.4 . No change in position has been observed.
\& Persei. A star of 42 mag., with a companion of 10 mag., at a distance $17 \cdot 9^{\prime \prime}, \mathrm{p} .=298^{\circ}$. A second companion 9.5 mag., at distance $69^{\circ} 2^{\prime \prime}, \mathrm{p} .=218^{\circ}$.

584 (1039), Star Cluster in Perseus, having a diameter of 15^{\prime}; discovered by Messier. The stars range from 9 to 11 mag., and are coarsely distributed; with a small telescope upwards of 100 stars can be distinguished.

600 (1068), Nebula in Cetus. First discovered by Méchain in 1780. It is small, fairly brilliant, and is preceded by one star, and followed by two others. According to Lord Rosse, the nebula shows spiral arrangement.
γ Ceti. A star of yellow colour, 3.5 mag ., with a companion 7 mag .; distance $3^{\prime \prime}$; position angle, 291°.
$604(1084)$, Nebula in Cetus. Faint, oral in shape, with a slight increase in brilliancy towards the centre ; apparently a star cluster situated at an immeasurable distance.
${ }_{\eta}$ Persei, 4 mag., with a companion (of blueish colour), 8 mag.; distance, $28^{\prime \prime}$. There are also several very faint stars near it.
T Arietis. A variable star, discovered by Auwers 1870. At maximum, 7.9 to 8.6 mag. ; at minimum, $9 \cdot 3$ to $9 \cdot 7$ mag. Period, 313 days. Of a reddish colour.
π Arietis. Triple; magnitudes, 5 , 8, and 10 ; recognised as triple by Herschel in 1779. The nearest companion is at a distance $3 \cdot 3^{\prime \prime}$; position angle, 121°. The faint outer companion at distance $25^{\prime \prime}$; position angle, 110 .

41, Arietis. The primary is 4 mag. Herschel saw a faint companion in 1779 at a distance of $126^{\prime \prime}$ (127° position angle), then in 1782 a second at distance $39^{\prime \prime}$, position angle, 189°. Finally, Struve, at Pulkowa, discovered yet another very faint companion (11 mag .) at distance $16^{\prime \prime}$. The distance of this latter, as observed by Burnham in 1880, was $21^{\prime \prime}$, position angle, 266°.

$\begin{aligned} & \text { I:1:ゥ1, } \\ & \text { Iscension. } \\ & 1900 . \end{aligned}$	$\begin{gathered} \text { ['e hiration. } \\ \text { 19: } 1 \text {. } \end{gathered}$
$\begin{array}{ll} \mathrm{h} & 121 \\ \ddot{-} & + \end{array}$	+ il^{-1} ati
$\because \quad .11$	$+\because 11 \quad .11$

$-21+211$ in
$258-\therefore \quad \therefore$
$25!+\therefore 3$
$\therefore 11+24$
$\therefore 2$
$\therefore 2+4124$
$38-1 \quad: 1$
$\therefore \quad \therefore+46 \quad 53$
$\therefore \quad \therefore-24 \because 1$

 years. C is at distance $14^{\prime \prime}$ from A, prosition angle 23^{3}. .
ε Arietis. A double star, primary, 4.5 mag., companion 6 mag., 1 , 1 . distance $1.5^{\prime \prime}$. As conjectured by Struve, the primary probably varies from
 Engelmann supports this theory.
ς^{2} Eridani, 6 mag., with a companion of 10 mag., distance $=\because \therefore$ $\mathrm{p} .=81^{\circ}$; discovered by Burnham.
ρ Persei. This orange-coloured star was first recognised as variable in 1854, by J. Schmidt. The period is seemingly quite irregular, and the brightness at maximum varies considerably.

52, Arietis. Triple, but cannot be clearly divided except by a very powerful telescope. The primary, 5.5 mag., has one companion at distance $0.6^{\prime \prime}$; the outer companion, which is very faint (11 mag.), is at distance $5^{\prime \prime}$.
β Persei (Algol). One of the most interesting variable stars. The variation was discovered as far back as 1767 or 1769 , by Montanari, but Goodricke, in 1782, was the first to recognise its true nature. According to his account, the star remains invariable for $2 \frac{1}{2}$ days, and then decreases
 2.2 mag. The period is 2 days $20 \mathrm{~h} .48 \mathrm{~m}, 55 \cdot 4 \mathrm{~s}$. This is not constant, there being a difference of a few seconds in the course of the years. In the winter of $1889-90 \mathrm{H} . \mathrm{C}$. Vogel took frequent photographs of the spectrum of Algol at moments when the hydrogen lines were visille. From these it appeared that the lines in the Algol spectrum, observed before the star had reached its least brilliancy, showed a shifting towards the red, corresponding to a recession of the body from the earth at the rate of some 24 miles a second. When the star, on the other hand, began to increase in brightness, a shifting of the lines towards the violet was observed, corresponding with an approach towards the earth of 28 miles per
 companion revolved around their common centre of gravity in au almost circular orbit, and that the light of the principal was thus periodically obscured to us by the companion. From measurements of the motion, and from the period of variability, Vogel deduced for Algol a diameter of $1,062,500$ miles, and for its companion a diameter of 837,500 miles, the distance of their common centre from each being $3,250,000$ miles. Both stars are probably surrounded by extensive atmospheres, and their uniterl mass is some two-thirds of that of our own sun.

94 , Ceti, 5.5 mag , has a very faint companion at $\mathrm{d} .=5.7^{\prime \prime}, \mathrm{p} .=251$,

(658 (1245), Star Cluster in Perseus. A beautiful cluster 8^{\prime} in diameter, very rich in stars of 10 mag. and under. Discovered by W. Herschel, 27 December, 1786 .
 $\because 4^{\prime \prime}$, position angle 316°.

$\begin{gathered} \text { l:ight } \\ \text { Asemhon. } \\ \text { 1901\%. } \end{gathered}$	$\begin{gathered} \text { Declination. } \\ 1900 . \end{gathered}$
h. m.	- ,
311	$+411$

$\begin{array}{llll}: \% & 18 & -1.7 & 45\end{array}$
$\therefore \because 1+39 \quad 30$
$3 \quad 22+55 \quad i$
$\therefore \because-2141$
$\therefore \ddot{-2}+\therefore \because \because$
$\therefore \quad 24+43 \quad 34$
$\therefore 2.5+3659$
$3-24+5826$
$\therefore 29+24 \quad 7$
$320+11$
$\therefore: 3+4+5$
$\therefore 30+3: 33$
$340+2328$
$3+2+23+5$
$\Sigma 369$, Double Star in Perseus. The primary, 65 mag., is of a yellowish-white colour; the companion, 8 mag., is blueish-white. The distance, $3 \cdot 5^{\prime \prime}$, seems to be increasing, but very gradually.

692 (1309), Nebula in Eridanus. Rather faint, large, irregularly round in shape, gradually increasing in brilliancy towards the centre. A star, 8 mag., precedes the nebula.
$\Sigma 385$, Camelopardalis. The primary, 5 mag., is yellow in colour, the companion, 9 mag., distance $2^{\circ} 4^{\prime \prime}$, position angle, 161°, is white.

玉 390, Camelopardalis. Primary, 5 mag., greenish-white in colour, with a faint companion 9.9 mag., distance $15^{\prime \prime}$, position angle, 160°.

709 (1332), Nebula in Eridanus. Discovered by W. Herschel; fairly bright, elongated, but small, with a nucleus, followed southwards by a small and very faint nebula. The spectrum is continuous, and the object is therefore really a star-cluster.
R Persei. A variable star. At maximum it sometimes reaches 8 mag., and at minimum becomes frequently less than 13 mag. Period, 210 days. According to Schoenfeld, it remains at 12 mag. and under for two months.

Noya Persei. Discovered by Dr. Anderson, of Edinburgh, on February 21,1901 . The star was then of 25 mag., and shone with a blueish-white light. On February 23 it was brighter than Capella. The spectrum is of the solar type, containing, however, some bright limes,

717 (1342), Star Cluster in Perseus. Large (15^{\prime} in diameter), contains about 60 stars coarsely scattered. Discovered by Herschel, 28 Dec., 1799.

ェ 396, Camelopardalis. A star 6.5 mag., with a companion, 8 mag., $\mathrm{d} .=20 \cdot 3^{\prime \prime}, \mathrm{p} .=242^{\circ}$.

7, Tauri, 65 mag., with a companion 10 mag., distance $22^{\prime \prime}$. The star is thus described by W. Herschel, South, and John Herschel. But Struve, with the Dorpat refractor, divided the primary into two stars of almost equal brilliancy, at $d_{.}=0.6^{\prime \prime}$. Hall found in 1889, $\mathrm{d} .=0 \cdot 2^{\prime \prime}, \mathrm{p} .=212^{\circ}$.
$\Sigma 422$, Eridani. A double star, primary 6 mag., companion 8 mag., distance $6^{\prime \prime}$. The primary is yellow, the compauion blueish.
$\Sigma 430$, Tauri. Triple, $6.5,9$, and 9.5 mags. The first companion is at distance $26^{\prime \prime}$, position angle, 55°; the second at distance $38^{\prime \prime}$, position angle, 301°. The primary is yellowish.
o Persei. A star, 4.5 mag., with a faint companion 9.5 mag.; distance $2010^{\prime \prime}$, position angle, 237.

768 (1435), Nebula in the Pleiades. Discovered by Tempel, 19 Octoler, 1859. An extremely faint nebula, situated near the star Merope. The brothers Heuri have discovered, by the aid of photography, another very faint nebula which seems to proceed from the star Maia, but this can only be seen with a most powerful telescope. (Cf. Sheet XIII.) Barnard and Wolf have since shown, from an examination of photographs, that the Pleiades are surrounded by fine nebulous masses stretching out to a considerable distance.
η in the Pleiades. Quadruple, and a very beautiful object even as seen with a small telescope. The primary, 3.5 mag ., has one companion 6.5 mag. at distance $118^{\prime \prime}$, position angle, 289°; a second, 7 mag., distance $116^{\prime \prime}$, position angle, "34. Lastly, there is a small star, 9 mag., at

$\begin{aligned} & \text { 1: whe } \\ & \text { A } 10+1 \text { whin. } \\ & 1900 . \end{aligned}$	$\begin{aligned} & \text { 1). limation. } \\ & 1900 . \end{aligned}$
1. m	\bigcirc,

distance $115^{\prime \prime}$ from the companion of 6.5 mag., position angle, $303^{\circ} ; \eta$ i also known by the name of Alcyone. (See Sheet XIII.)

775 (1444), Star Cluster in Perseus. Small, consisting of about 311
 whole is from 2^{\prime} to 3^{\prime} in diameter.

$\mathbf{\Sigma} 453$ (Atlas) in the Pleiades. A star, 45 mag. In 1827 and 18301 Struve faucied that he could distinguish a companion to this star of 8 mag., distance $0.8^{\prime \prime}$. It was, however, never seen afterwards by Struve or any other observer. Even Buruham always found the star to be single and perfectly round.
ζ Persei. Quintuple. The primary, $2 \cdot 7$ mag., has, at clistance $33^{\prime \prime}$, a companion 11 mag., at distance $89^{\prime \prime}$, another of 9 mag., and a third 10 man . at distame $11!{ }^{\prime \prime}$.

32, Eridani. Primary 4.5 mag., yellow, with a companion 6 mins. distance $6 \cdot 7^{\prime \prime}$, of a blueish colour. Discovered by W. Herschel in 1781. The wo colonss are rexy clem! di-timenished.
£ Persei. Primary 3 mag., companion 8 mag., distance $9^{\prime \prime}$. The companion is probably variable, its colour, too, is said to change from blue to red, hut the matter repuires further investication.
$\Sigma 460$, Cephei. A very close double star, primary, 5 mag., companion 6 mag ., distance $0.9^{\prime \prime}$.
λ Tauri. Found to be variable by Baxendell in 1848. It belonss $1 /$ the Algol type. P'eriod \pm days; the changes in brilliancy, however, only occupy $10^{\text {h }}$; magnitude at maximum $3 \cdot \frac{1}{4}$, at minimum 42 . It loses nur: 'fuikly than it sams in lnillithey.

801 (1501), Nebula in Camelopardalis. Rosse saw a star of 14 mag.,
 this nebula in detail a most powerful telescope is required: even when examined by an 8 -inch refractor it is very faint.
$\Sigma 485$, Camelopardalis. Two stars of about 6 mag. at $18^{\prime \prime}$ distance. I triple star (2 tist; pobsisting of thee stars of : mas.. proculas them.

809 (1513), Star Cluster in Perseus. Very beantiful and rich in stars, \because in diameter, rather wowted and irresulanly rombl in shape. This dustom is sumbumbed hy a ring of faime stars, which ammol be well sem exopl with a very prwertul instrument.

ェ 495, Tauri. Primary 6.5 mag., companion 9 may., distance $4^{\prime \prime}$.
813 (1514), Nebulous Star in Taurus. A star of 8 mag., surrounded by a faint nebula 3^{\prime} in diameter.
μ Persei. Discovered to be a double star by W. Herschel, 2 Aug.,

 discovered, distance (according to Burnham) $14^{\prime \prime}$, position angle 349°.

820 (1528), Star Cluster in Perseus. Rich in stars, nearly 15^{\prime} in diameter, rather crowded, with some fairly brilliant stars, apparently in

47, Tauri. Primary 5 mag , companion 8 mag., distauce ouly $0.8^{\prime \prime}$.

$410-10 \quad: 31$
$+11-1: 11$
$411-74$
$+1: 3+i n 1$
$414+27 \quad 7$
$417+25 \quad 23$
$+16+19 \quad 18$
$418+34 . \pi$
$+19+224$
$+23+319$
4 －3 +36
$\pm 23+15+4$
$\pm 24+5342$
$+25+39+4$

There is，in addition，a second very faint companion（12 mag．）at distance $32 \cdot 2^{\prime \prime}$ ，position angle， 223° ．This last was discovered by Burnham．

4，Tauri．Up to 1872，J．Schmidt found that he could always make this star out with the naked eye as of 6 mag．In September，1872，it decreased to t mag．，and then again became visible to the naked eye，nor has any variation been observed in its brilliancy since 1874.

A Eridani．Primary 5 mag．，and yellowish in colour，with a very faint companion 9 mag．，distance $6 \cdot 3^{\prime \prime}$ ．First discovered to be a double star by W．Herschel， 31 January， 1785.

826 （1535），Nebula in Eridanus．A planetary disc，of fair brilliancy． According to Lassell，there is a star of 12 mag．in the centre．Herschel， who discovered it in 1785 ，took it to be a star cluster，and its spectrum supports this view．The nebula is a very small one．
0^{2} Eridani．A star of 45 mag．，with a companion 9 mag．d．$=82^{\prime \prime}$ ， $\mathrm{p} .=106^{\circ}$ ，which is itself a double star．The two stars which compose it are at distance $3 \cdot 6^{\prime \prime}$ from one another．Discovered by W．Herschel in 1783 ，with the help of a 6 －inch reflector．This double gives indication of a strong proper motion，amounting lately to $4^{\prime} 05^{\prime \prime}$ per annum．

831 （1545），Star Cluster in Perseus．The stars are coarsely scattered， fairly numerous，and many of them are of fair brilliancy．Discovered by W．Herschel， 28 Dec．， 1790.
ϕ Tauri．A double star，primary（which is reddish） 5.5 mag．，com－ panion 8.5 mag．Distance（in 1873）54 $4^{\prime \prime}$ ，position angle 246° ．
χ Tauri．A star 6 mag．，with companion 8 mag．，distance $19^{\prime \prime}$ ．
T Tauri．A variable star of irregular period，discovered by Hind， 1861. It is preceded 1^{m} by a very remarkable variable nebula．This latter had been frequently seen since 1854，but in 1861 d＇Arrest could not find any trace of it even with the great refractor at Copenhagen．According to Argelander，the star T was of 94 mag．in 1852 ；but since 1869 it has always been less than 11 mag．；its brilliancy has seemingly decreased at the same rate as that of the nelula，a noteworthy fact，since it seems to indicate some sort of relation between the two phenomena．
$\Sigma 533$ ，Persei．Primary 6 mag．，companion $7.5 \mathrm{mag}^{2}$ ，distance $20^{\prime \prime}$ ．
κ Tauri．Two stars of 5 mag．and 6 mag．respectively，at distance $339^{\prime \prime}$ from one another ；between the two there is a minute double star of 11.2 and $11 \cdot 6$ mag．，distance $5^{\prime \prime}$ ．
$\Sigma 5 \pm 8$ ，Tauri．A double star of 6 and 8 mags．，distance 14＂．
R Tauri．First recognised as a variable star by Hind in 1849．It is of a deep red．At maximum it fluctuates between $7 \cdot 4$ and 9 mags．；at minimum it is less than 13 mag ．Period of variability nearly $325 \frac{1}{2}$ days．
θ^{1} Tauri．Two stars of 4 and 4.3 mags．，distance $337^{\prime \prime}$ ．Can be recog－ nised as a double star with the naked eye．In spite of their great apparent distance，the stars seem to staud in a physical relation to each other．

1，Camelopardalis．A star of 6.1 mag．，with a companion 6.2 mag ．，at distance $104^{\prime \prime}$ ．
$\Sigma 552$ ，Persei．A double star， 6 mag．and 6.5 mag．，distance $9^{\prime \prime}$ ．Both stars are white．

	Nilit	$\begin{aligned} & \text { Decy linatione } \\ & 1800 . \end{aligned}$	
	${ }^{\text {tin }}$	$+1$.	2.5
	26	$+12$	
	: 11	+ $11 i$	1!
4	311	+ 3	S
	32	$+53$	17
4	\because	$+15$	43
	$\therefore i$	+ $\because=$	$4 i$
		-	i!
	4:	$+11$	1.5
	415	$+1$.	\because
	\therefore	$+\ldots$	$\therefore 3$
t	$\therefore 1$	\therefore	$\because 11$
		$+37$	44
t	54	$+$	$\therefore 1$
	\therefore	$+52$	4
	-	$+1: 3$	11

80, Tauri, 6.5 mag. A very close double star, the companion, 7 : mag., being, in 1879 , only at distance $0 \cdot \sigma^{\prime \prime}$, and this is continually decreasing.
mersei. Two stars of is mar. amd if mane. at Mivammen |1|. In IIerschel's time these stars seem to have been much fainter.
a Tauri (Aldebaran). A red star 1 mag., with a very interv-lin. spectrum (Vogel, Class IIa). It has a companion 10 mag., at distance $117^{\prime \prime}$, which Burnham resolved into two stars at a distance of $2^{\prime \prime}$. Burnham discovered a second companion at distance $31 \cdot 4^{\prime \prime}$, position angle, 109°; but it is so faint as to be visible only in a most powerful telescope. From
 Tauri to be receding from our sun at the rate of over 39 miles per second.

88, Tauri, 4.5 mag., with companion 8 mag., distance $69^{\prime \prime}$. Discovered by W. Herschel, 24 September, 1780.

2, Camelopardalis, 5.5 mag, yellowish, with a blueish companion, 7. 1 mag., distance (according to Engelmann, 188:3), 1.9"; position angle, 292 .
σ Tauri. Two stars of 4.6 and 5.5 mags., distance $42.9^{\prime \prime}$; can be divided by the naked eye.

- Tauri, 45 mag , with an easily distinguished companion, 7 mag.,

55, Eridani. A star of 6 mag., with a companion, 7 mag , distan $+{ }^{\prime}$!". The primary is yellowish, the companion white in colour. Found to be double by W. Herschel in 1783.
: 14.1 (1662), Star Cluster in Orion, consisting of 18 stars of from 8 to 11 mag. Somewhat scattered. Vogel has measured their relative positions with the mir."muter:
V Tauri. A variable star, first recognised as such by Auwers, 1870. The star is reddish. At maximum it reaches 8.3 mag . ; at minimum it diminishes to 13 mag. Period 170.6 days.

7, Camelopardalis. A star of 4.5 mag., with a very faint companion (11.3 mag), at distance $26^{\prime \prime}$. Dembowski, in 1864 , discorered that the primary was itself a double star, having a companion of 8 mag. at di-tance $1 \because$ ".
b Eridani, 6 mag., with companion 8 mag., distance 64".
t, Aurigae. A star 5.5 mag., giving a greenish light, with a .om-
 W. Herschel, 30 Octoher, 1779.
R Orionis. A rariable star, of a deep red colour, discovered by
 is less than 13. Period, 380 days. According to Schoenfeld, the increnin brilliancy from 10 mag. upwards occupies 70 days; the decrease from maximum to 10 mag., 105 days

940 (1708), Star Cluster in Camelopardalis. Fairly large and con-

Aurigae. Recognised as variable by Schmidt and Heis. The stan

| $\substack{\text { Rigbt } \\ \text { Ascension. } \\ 1900 .}$ | Declination.
 1900. |
| :---: | :---: | :---: |
| b. $\quad \mathrm{m}$. | 0 |

$$
\tau
$$

,

996 (1778), Star Cluster in Auriga. This is really not a cluster, but rather a rich field of stars. Herschel first saw it 17 January, 1787. The most brilliant stars contained in it are of 7.5 mag., the faintest 11.5 mag.

1005 (1788), Nebula in Orion. Fairly brilliant, 3^{\prime} in diameter, and gradually fading towards the edges. It forms a triangle with two stars, 10 mag. and 12 mag. respectively. Discovered by Herschel, 2 January, 1786.

14, Orionis. A star of 6 mag., with a companion 7 mag., at distance $1 \cdot 1^{\prime \prime}$, position angle, 205°.
$\Sigma 645$, Aurigae. A double star, primary 6 mag., companion 8 mag., distance $12^{\prime \prime}$, position angle, 27°.
$\mathbf{\Sigma} 634$, Camelopardalis. A star of 5 mag., with a companion 8 mag. In 1834 the distance was $345^{\prime \prime}$, but in 1880 it was only $20^{\prime \prime}$; position angle 2°.

1030 (1817), Star Cluster in Taurus, 20^{\prime} to 25^{\prime} in diameter, rich and fairly erowded with stars ranging from 11 to 14 mag. Discovered by Herschel, 19 February, 1784.
$\Sigma 652$, Orionis. A double star, primary 6.5 mag., companion 8 mag.: distance $1^{\prime} 7^{\prime \prime}$, position angle 184 .
c Orionis. A yellow star, 4.7 mag ., with a companion 8.5 mag ., of a blueish white ; distance $7^{\prime \prime}$. No change has been observed in the position of the companion since Herschel's time. It is an easy object for powerful telescopes.
, Leporis. A greenish star, 4.5 mag , with a faint companion 105 mag. ; distance $13^{\prime \prime}$. This distance does not seem to vary. The position angle, 338°, also seems to be nearly invariable.
R Aurigae. A variable star, first recognised as such at Bonn Observatory in 1862. At maximum it reaches 6.5 to 7.8 mag , at minimum it is almost 13. Period 460 days. The changes in brilliancy are sometimes very peculiar.
a Aurigae (Capella). A white star, 1 mag., with companion 9 mag.; distance $158^{\prime \prime}$, position angle 146° (discovered by Herschel). Burnbam found two other very faint companions, magnitudes 12 and 13 , distances

$78^{\prime \prime}$ and $126^{\prime \prime}$, position angles 317° and 183° respectively. Struve (in $1 \ldots$. conjectured that Capella had become more brilliant than formerly, and that

 Newall, of Cambridge, from examination of its spectrum, concluded that C'apell:ı

 light of Capella, indicating a close companion at a calculated distance of $0 \cdot 8^{\prime \prime}$.

14, Aurigae. Triple. The primary, 5.5 mag , has a companion 7 mag , at distance 14.5 ". This was first seen by W. Herschel, 24 Sept., 1780. Struve, in 1830, discovered another very faint companion (11 mag.) at distance $126^{\prime \prime}$, position angle 342^{\prime}.
${ }_{\kappa}$ Leporis. A double star, primary 5, companion 8 mag., distance 3 According to Struve, the primary is yellowish, the companion blueish.
β Orionis (Rigel). A brilliant star, 1 mag., with a companion 8 mag., distance $9 \cdot 6^{\prime \prime}$. Discovered by W. Herschel, and a very beautiful object in a powerful telescope. The companion, as remarked by Burnham in 1871, is itself a domhle star, hat it is sum a lillomh wheer that limmban himself, with the 18 -inch refractor at Chicago, only at times succeeded in "dividing" it. Other observers have so far been unable to do so. Aitkeu again saw the companion in the 36 -inch telescope in 1890 , and found in 1900 distance $=0.1^{\prime \prime}, p_{0}=196^{\circ}$. There is yet another very faint star at distance $44^{\prime \prime}$, position angle 1.5°. According to Seidel, β is in a slight degree variable. Huggins discovered in the photograph of β 's spectrum 10 lines which corresponded with the lines of oxygen, also lines of nitrogen.
$\mathbf{\Sigma} 674$, Tauri. A star of 6.5 mag., with a companion 9 mag ., dist. $1 \mathrm{~m}+\mathrm{F}$ $10 \cdot 5^{\prime \prime}$, position angle $147 \cdot 3^{\circ}$.
λ Aurigae, 6 mag., with a companion 9 mag., distance 122". Burnham found yet another very faint star at distance $40^{\prime \prime}$, position angle 198°.

1067 (1851), Star Cluster in Auriga. A beautiful group of -tanslightly denser towards the centre. A star of 7 mag., outshines all the others. Discovered by Herschel, 18 October, 1786.
$\mathbf{\Sigma}$ 681, Aurigae. A double star, primary 6.5 mag., companion 911 m distance $23 \cdot 2^{\prime \prime}$, position angle 181°.
τ Orionis. This star, 4 mag., has two very faint companions. Burnham, 1899, gives the following measurements :-
A B. Distance $35^{\prime \prime}$
Position angle 2.5
Ir ., $\because i^{\prime \prime}$
60

It was Burnham who discovered that B is a double star: 10% mag.

m Orionis. A greenish-white star, 5 mag., with a companion (white) 7 mag., distance $31 \cdot 7^{\prime \prime}$, position angle $28 \cdot 1^{\circ}$. No change of position h.as as yet, been observed.

111, Tauri. A star of 5.5 mag., with a companion 8 mag., distance $7 . \mathrm{N}^{\prime \prime}$,

Triple Star in Lepus. The primary is 6 mag., the nearer companion,

$\begin{gathered} \text { Hifht } \\ \text { Ascension. } \\ 1960 \text {. } \end{gathered}$	1 wellination.
1. m	- ,
$5 \quad 19$	$+3317$
$5 \quad 19$	-229
$5 \quad 19$	+ 616
$\therefore \quad 20$	- - 4 3
$5 \quad 21$	+ $2.51: 3$
$\therefore \quad \because$	$+30$
$\therefore \quad \because$	$+2.51$.
- $\because 3$	+

which is at distance $3.5^{\prime \prime}$, is 9 mag., the farther companion, which is at distance $59^{\prime \prime}$, is 8.5 mag .

1101 (1893), Star Cluster in Ãuriga. Fairly large, and rich in stars, slightly denser towards the centre.
η Orionis, 3.5 mag., with a companion 10 mag., at distance $110^{\prime \prime}$. Dawes, in 1848, discovered that the primary was itself a double star, having a companion of 5.5 mag . at distance $1^{\prime \prime}$. It requires a strong instrument to "divide" this star.
γ Orionis. A star of 2 mag., supposed by J. Herschel to be slightly variable. Gould, too, finds slight variations, but only of about $\frac{1}{3}$ mag.

1112 (1904), Star Cluster in Lepus. A splendid globular cluster discovered by Méchain, which Messier described as a starless nebula with a brilliant centre. Herschel was the first to resolve the nebula into stars. From photographs taken at Arequipa it appears that 5 stars out of the 200 of this cluster are variable.

1114 (1907), Star Cluster in Auriga. A somewhat crowded circular cluster, 4^{\prime} in diameter, consisting of small stars ranging in magnitude from 9 to 12. Discovered by W. Herschel, 17 January, 1787.
ψ^{2} Orionis. A star of 5.5 mag., with a very faint companion of 11 mag ., distance $2 \cdot 9^{\prime \prime}$, position angle 322°.

1119 (1912), Star Cluster in Auriga. A beautiful object, about $\mathbf{1 0}^{\prime}$ in diameter. Discovered by Messier. A brilliant star may be observed in the centre. The stars are of unequal brilliancy. Its form, according to Messier, is quadratic. The cluster is not at all nebulous if examined with a powerful telescope.

118 , Tauri. A double star, primary 6 mag., companion 6.5 mag. Discovered by Herschel in 1782 , but since his time the position of the companion has undergone little or no change. Distance $5^{\prime \prime}$, position angle 200°.
β Leporis. A triple, the components being of 3,10 , and 11 mags., at distance $3^{\prime \prime}$ and $66^{\prime \prime}$ respectively. The innermost companion was discovered by Burnham, the outer one by John Herschel. Burnham observed also two stars of 10 mag. at distances $206^{\prime \prime}$ and $210^{\prime \prime}$ respectively.

31, Orionis. A double star, primary 5.5 mag., companion 10 mag , distance $12.7^{\prime \prime}$, position angle 88.4°. The primary is reddish in colour and apparently variable; at least Gould at Cordova estimated its magnitude at rarious times as 4.7 mag. to 6 mag .

A 32, Orionis, 5.2 mag., with a companion 6.7 mag., distance (in 1878) only $0 \cdot 6^{\prime \prime}$. In W. Herschel's time the distance was more than $1^{\prime \prime}$.

1137 (1931), Nebula in Auriga. A large, brilliant, circular nebula, with a slightly increased brilliancy at the centre, where there is a triple star. The whole is 5 ' in diameter. Discovered by Herschel 4 February, 1793. According to Brodie the nebula is very faint.
$\mathrm{n}^{\prime} 33$, Orionis, 6 mag., with a companion of 7 mag , at distance $1 \cdot 9^{\prime \prime}$. Not easy to observe with an ordinary telescope.
$\Sigma 730$, Tauri. A double star, 6.5 and 7 mags. Distance $9 \cdot 8^{\prime \prime}$, position angle 142°.

Noya Aurigae. This star was found to be new on 23 January, 1892,

 after which it rapidly became feebler, until in April it was only $14 \mathrm{n} . \mathrm{A}_{\text {. }}$ By August, 1892, it had increased in brilliancy to 9.2 mag., and remained thus until the middle of 1894 , when it began again to become feebler almost to the point of vanishing. The prints of the photograpls of the

 The spectrum of this star was examined by Huggins, also at the Harvard and Lick Observatories, and at Potsdam and Polkowa, photographs being taken of it. It gave both bright and dark lines, especially hydrogen lines, but all of them were shifted from their original position, whence it wa -s cluded that the spectrum consisted really of the superimposed spectra of tro stars, and that both bodies were moving away from the earth in the line of sight. Later physical investigations have, moreover, shown that, with indications of strong pressure in the spectrum of the metals, bright and dark lines appeared in couples, exactly as in the observed spectra of other Novæ. Owing to the appearance of the spectrum of these bodies, we can no longer conclude that the outbreak of this Nova was the result of the rapid approach in their orbits, or the coming together, of two cosmical bodies. The cause of the outburst of light of this (and other Nove) remains, however, still doubtful. From the observations at the Lick Observatory in August, 1892, the spectrum of this Nova bore fully the character of that of a planetary nebula.
 lately noticed yet another companion of between 13.5 mag., distance $32^{\prime \prime}$,
 milliant -tar. The pimary is vamiale, lum only tor the extent if halt a magnitude, and the period is irregular.
 $35^{\prime \prime}$, position angle 156°.

1157 (1952), Nebula in Taurus. Scen as far back as 1731, by Messier, but imperfectly, and described by him as a starless nebula, something like a dull flame. W. Herschel thought it capable of being resolvel, and alluded to it as a magnificent object. Lord Rosse, with his great telescope, was the first to obtain an exact view of the nebula; he compared its appearance to that of a crab (crab-nebula) ; he saw several very minute
 that all the former representations of this nebula fail to give a satisfactory description of its appearance as seen through a telescope of the highest power:
 9^{\prime} in diameter, a very fine view of which may be obtained with a $3 \hat{1}$, $1+$ is
 9 mags., distance $10 \cdot 6^{\prime \prime}$) being among them.
λ Orionis. A yellowish-white star, 35 mag., with a reldish companion

$\begin{gathered} \text { Right } \\ \text { Ascensiun } \\ 1900 . \end{gathered}$	Declination. 1900.

$\therefore: 30-101$
$\therefore 30-708$

Struve found another very faint star (10 mag.), distance $28^{\prime \prime}$, position angle 184°; and another of 10.5 mag ., distance $149^{\prime \prime}$, position angle 278°.
$\Sigma 747$, Orionis. A double star, 5.6 and 6.5 mags., distance $36^{\prime \prime}$. The position of the companion has not changed since 1833.

1179 (1976), The Great Nebula in Orion. The most conspicuous and interesting object of its kind in the Northern heavens, and an inexhaustible field of research to all who have a powerful telescope at their disposal. No description can give an adequate picture of this nebula. The earlier accounts given by De Vico, Herschel, and others are not satisfactory. Only the sketches given by Rosse, Bond, and Tempel, can be considered at all adequate. In Sheet xiv. will be found a reproduction of Bond's masterpiece. This map was obtained with the help of a 14 -inch refractor, a first-class instrument, though far inferior to Rosse's 6-foot reflecting telescope in point of illuminating power. Nevertheless, this latter failed to discover any additional feature of importance. Bond's drawing covers an area of $3 \frac{1}{3}^{\circ}$ square. Taking the quadruple star, $\boldsymbol{\theta}$ Orionis ($\Sigma 748$), which forms the celebrated Trapezium, as a starting-point, this area extends $2^{\prime} 15^{\prime \prime}$ on both sides in Right Ascension, and $1^{\circ} 30^{\prime}$ in Declination to the north and south respectively. The chief nebula round $\boldsymbol{\theta}$ seems to be connected with the nebulæ round c and ι; at least the observations of Rosse and Bond point to this conclusion, while Herschel is undecided. G. P. Bond has given a list of 1101 stars, all of which, however, are in positions where his refractor showed nebular matter connected with the great nebula. Bond has also pointed out a kind of spiral structure in certain portions of the Orion nebula. This shows itself in narrow, crooked streaks, of which several frequently proceed from a common centre. Since Herschel's time, many attempts have been made to resolve the nebula in Orion into separate stars; especially has the part south of the Trapezium, which is generally called after the astronomer Huyghens, and of which the most brilliant portion seems to be drawn out into a rhomboidal or lozenge shape, been carefully examined with the most powerful telescopes with a view to disintegration. For a long time it was reported that Lord Rosse's great telescope had succeeded in resolving this portion of the nebula into a star cluster, but this was not the case. Rosse and his collaborateur, Hunter, succeeded only in discovering faint luminous points in individual places where no stars had been seen previously. Finally, spectrum analysis has proved that the nebula is composed principally of masses of luminous gas. The central portion may be said to be marked off by the four brilliant stars which compose the celebrated Trapezium, which, standing on a dark background, are surrounded by masses of luminous nebula. The elder Herschel, who began his astronomical labours by measuring the distances of the stars in the Trapezium, never observed more than four stars there Struve saw a fifth (12 mag.) in 1826; Sir John Herschel and South in 1832 discovered a sixth of 13 mag. ; and De Vico in 1839 saw three others, but these have never since been again observed even in the most powerful telescopes. Lamont also discovered two stars which could be considered as belonging to the Trapezium, and Lassell, at Malta, 2 January, 1862, another

 amount to 11 or 12. These, however, have nerer been visible at the same time to one observer. Moreover, Burnham, who is unquestionably one of the ablest, if not the most able, observer in this particular field, absolutely declines to admit that more than six stars are visible in the Traperium, and
 He likewise refuses to credit the supposed variability of the fifth or sixth star. This last he thinks to be of 12 mag . By the 36 -inch instrument at the Lick Observatory, two excessively feeble stars were discovered within

 shows bright hydrogen lines. The nebula has been frequently photographed, the best photographs having been obtained at Arequipa (Peru), and at the
 appears that the nebula extends far beyond the limits immediately assi_n.... to it by the naked eye, or even in the most powerful telescopes.
$118 \pm$ (1981), Star Cluster in Orion. An extended group of stars, of 6 and 7 mags., besides some fainter ones. Among them is a double star

c Orionis. A triple star, primary, 3.5 mag., companions, 7 and 9.5 mate
 farther and fainter companion (distance $500^{\prime \prime}$) was observed by South in 1824.

1185 (1982), Nebula in Orion. Fairly brilliant and large, brighten thrathe the centre, when there is: stat of is mas. Mescier hat whement this object, and described it as a star with a nebulous envelope.

1191 (1988), Yariable Nebula in Taurus. A star of 11 mag. was observed in this place by Chacornac in 1852, but without any trace of nebula. Next year he saw the star again, this time surrounded by nebula; on 27 June, 1856, the nebula had become very brilliant, but in 1862 it had entirely disappeared, and has not since been observed. The star (11 mag .) has not been observed to vary.

1193 (1990), Nebula round \& Orionis. On January 2, 1786, W. Herschel
 an irregularly blurred, milky mass of nebula. This observation was, as it turned out, a correct one; several other observers have noticed the faint nebula round the star. Rosse's great telescope showed it in 1850 and 1852 ; but in 1874 and 1878 , in spite of many efforts, it was impossible
 companion, of 9 mag., distance 3^{\prime}, position angle 57°.

1199 (1996), Star Cluster in Taurus. A large cluster, 15^{\prime} in clian.+ッッ.
 very numerous. Discovered by Herschel, 7 December, 1785.

26, Aurigae. A double star, 6 and 8 mags., distance 12". Discorment
 distance $26^{\prime \prime}$, position angle 113°.

	$\begin{aligned} & \text { imimation. } \\ & \text { 1900. } \end{aligned}$	
$\therefore \quad 3$	$+11$	1
- $1: 3$	$+6$	$\therefore 7$
$\therefore \quad 4 i$	$+32$	31
\therefore : 11	+ i	51)
: 4 ! 1	+11	\because
7 511	+ 7	\because
: 32	+ +t	
- . 33	$+37$	$1:$
$5 \quad \therefore$	$+231$	18
i $: 3$	+2+	$\because 1$
$1 i \quad: 3$	$+13$	59
1; 4	$+48+$	+
11	+2	
i) 1	- 11	¢

1267 (2068), Nebula in Orion. Seen by Méchain in 1780, and destruluil

 companion is itself double; distance $1 \cdot 7^{\prime \prime}$.

52 , Orionis. A star of 6 mag ., with a companion of 7 mag ., distance

1295 (2099), Star Cluster in Auriga. Discovered by Messier, and a
 star. Messier says that the stars are very crowded, and slightly minglenl

£ 816, Orionis. A double star, 6 and 8.5 mags. Distance $4^{\prime \prime}$, position angle, according to Struve (1830), 289°.

1310 (2112), Star Cluster in Orion, 7^{\prime} to 8^{\prime} in diameter. The -t:at are, however, small and somewhat crowded.
a Orionis (Betelgeux). A brilliant red star, 1 mag., which (as discmami by W. Herschel) has a companion of 10 mag. at distance $152^{\prime \prime}$. Burnham

 which has been carefully studied by Huggins.
β Aurigae. The spectrum of this star exhibits periodical doubling of its lines, showing that β is a double star which cannot be divided by the telescope, and is only recognised as such spectroscopically. The period of revolution amounts to only 4 days.
θ Aurigae. A triple star. Primary, \pm mag., nearer companion 7 mag. The farther, 9 mag. The distance of the former is $2^{\prime \prime}$, of the latter $45^{\prime \prime}$ Iccording to O. Struve, there is a fourth star 10 mag. at distance $125^{\circ \prime}$, position angle 350 .

1325 (2129), Star Cluster in Gemini. A cluster of 6^{\prime} to 7^{\prime} in diameter.
 it 16 November, 1784.

1360 (2168), Star Cluster in Gemini. A very splendid object, seen by Messier, 20^{\prime} in diameter. The most brilliant stars in it are of 9 mag. The field of vision is, however, filled with stars ranging from this magnitude to the faintest points of light.

1361 (2169), Star Cluster in Orion. Fairly large, consisting of about

41, Aurigae. A double star, 5 and 65 mags., discovered by Herschel. The distance ($8 \cdot 0^{\prime \prime}$) and position angle (3.53°) do not seem to vary.
$\mathbf{\Sigma} 855$, Orionis, 6 mag., with a companion 7 mag., distance $29^{\prime \prime}$, position. angle 113 .
t, Monocerotis. A triple star; the nearer companion discovered by Burnham; the farther by Knott. Primary A is 6\%, B $10 \cdot 5$, C 11 mas

$\begin{gathered} \text { Rielit } \\ \text { Aserition } \\ \text { 1900. } \end{gathered}$	Declination.	
" 1 "		A B, distance $3 \cdot 1^{\prime \prime}$ Position angle 178° A 0. $3 \cdot 0^{\prime \prime}$
b 7	+ 528	1376 (2186), Star Cluster in Orion, 5^{\prime} to 6^{\prime} in diameter; a rather crowded collection of brilliant and faint stars.
68	+12 .il	1383 (2194), Star Cluster in Orion. A beautiful cluster from 7^{\prime} to 8^{\prime} in diameter. With a low power, the field of vision seems filled with numerous stars of 10 to 12 mag . In two places the stars are densely crowded, and one of these places looks in a small telescope like a nebula.
$6 \quad 9$	+ 3i3 10	$\Sigma 872$, Aurigae. Primary 6, companion 7 mag. The distance (11") and position angle (217°) do not seem to vary.
$6 \quad 9$	$+2232$	${ }_{\eta}$ Geminorum. This yellow star, as discovered by Schmidt, in 1865, varies between 3.2 and 4 mags. Period of variability about 231 days. It has a companion 10.7 mag., distance $1 \cdot 2^{\prime \prime}$, position angle 292°, which is extremely difficult to see. Burnham discovered it.
$6 \quad 10$	- 614	5 , Monocerotis. A star of 4.5 mag. of a decided orange col
613	+59	4, Lyncis. This star, 6.5 mag., has a companion 8 mag., but this latter is so near to the primary that it can be divided only by a most powerful telescope. O. Struve (1847) found p. $=95 \cdot 6^{\circ}, \mathrm{d} .=0.87^{\prime \prime}$.
$6 \quad 17$	$+2 \underline{2} \quad \therefore t$	μ Geminorum. A yellow star 3 mag., with a faint companion 9.5 mag ., distance $122^{\prime \prime}, \mathrm{p} .=141^{\circ}$. Burnham discovered by the 36 -inch instrument that the companion itself is double; distance $0.7^{\prime \prime}$.
618	+ is 29	5 , Lyncis. Triple; primary 6, the nearest companion 10.5 , the farther 8 mag. Burnham (1879) found: A B: p. $=139 \cdot 1^{\circ}, \mathrm{d} .=30 \cdot 3^{\prime \prime}$; A C: p. $=272.5^{\circ}, \mathrm{d} .=95.9^{\prime \prime}$.
$6 \quad 19$	+ 439	8, Monocerotis. A yellowish star 4.5 mag., with a blueish companion 6.7 mag., distance $13.7^{\prime \prime}$. Can be divided with a small telescope.
(i) 20	+ $\quad 8$	T Monocerotis. A variable star, whose light fluctuates between 6 and 7.5 mag., within a period of 27 days. The changes of brilliancy were detected by Gould in 1871. According to Schoenfeld, the maximum and minimum of brilliancy fluctuate somewhat at different periods.
622	$+1 \ddot{4}$	1408 (2224), Star Cluster in Monoceros. Consists of 40 or 50 stars of from 10 to 11 mag., rather coarsely scattered upon a nebulous background. This last is difficult to see.
62	+20.11	15, Geminorum. Yellowish, 6 mag., with a blueish-white companion 8 mag., distance $31^{\prime \prime}$, position angle 206°.
62	- 442	1415 (2232), Star Cluster in Monoceros. Contains a yellowish star 6 mag . (10 Monocerotis).
(i) 24	- 6 is	11, Monocerotis. Quadruple, A $5 \cdot 5$, B $5 \cdot 7$, C $6 \cdot 1$, D 13 mag. The three brilliant stars were first seen by Herschel, the faint companion by Burnham. 1898:
626	$+1120$	$\Sigma 921$, Monocerotis. A star of 5.5 mag, with a companion of nearly 8 mag . Distance $16^{\prime \prime}$, position angle 4°.

A B, distance $3 \cdot 1^{\prime \prime}$
$2+9$

1376 (2186), Star Cluster in Orion, 5^{\prime} to 6^{\prime} in diameter; a rather wded collection of brilliant and faint stars.

1383 (2194), Star Cluster in Orion. A beautiful cluster from 7^{\prime} to 8^{\prime} in diameter. With a low power, the field of vision seems filled with numerous stars of 10 to 12 mag. In two places the stars are densely crowded, and one of these places looks in a small telescope like a nebula.

玉 872, Aurigae. Primary 6, companion 7 mag. The distance (11") and position angle $\left(217^{\circ}\right)$ do not seem to vary.
η Geminorum. This yellow star, as discovered by Schmidt, in 1865, varies between 32 and 4 mags. Period of variability about 231 days. It has a companion $10^{\prime} 7$ mag., distance $1 \cdot 2^{\prime \prime}$, position angle 292°, which is extremely difficult to see. Burnham discovered it.

5 , Monocerotis. A star of 4.5 mag. of a decided orange colour. latter is so near to the primary that it can be divided only by a most powerful telescope. O. Struve (1847) found $p .=95 \cdot 6^{\circ}, \mathrm{d} .=0.87^{\prime \prime}$. distance $122^{\prime \prime}, \mathrm{p} .=141^{\circ}$. Burnham discovered by the 36 -inch instrument that the companion itself is double; distance $0.7^{\prime \prime}$.

5, Lyncis. Triple; primary 6, the nearest companion 10.5 , the farther 8 mag. Burnham (1879) found: A B: p. $=139 \cdot 1^{\circ}, \mathrm{d} .=30 \cdot 3^{\prime \prime}$; A C: $\mathrm{p} .=2725^{\circ}, \mathrm{d} .=95^{\circ} 9^{\prime \prime}$.

8, Monocerotis. A yellowish stax 4.5 mago, with a blueish companion 6.7 mag., distance $13^{\prime} 7^{\prime \prime}$. Can be divided with a small telescope.
T Monocerotis. A variable star, whose light fluctuates between 6 and 7.5 mag., within a period of 27 days. The changes of brilliancy were detected by Gould in 1871. According to Schoenfeld, the maximum and minimum of brilliancy fluctuate somewhat at different periods.

1408 (2224), Star Cluster in Monoceros. Consists of 40 or 50 stars of from 10 to 11 mag., rather coarsely scattered upon a nebulous background. This last is difficult to see.

15, Geminorum. Yellowish, 6 mag., with a blueish-white companion 8 mag., distance $31^{\prime \prime}$, position angle 206°.

1415 (2232), Star Cluster in Monoceros. Contains a yellowish star 6 mag . (10 Monocerotis).
11. Monocerotis. Quadruple, A $5 \cdot 5$, B $5 \cdot 7$, C $6 \cdot 1$, D 13 mag. The three brilliant stars were first seen by Herschel, the faint companion by Burnham. 1898:

8 mag. Distance $16^{\prime \prime}$, position angle 4°.

$\begin{gathered} \text { Bight } \\ \text { Antion } \\ \text { ancon } \end{gathered}$	$\begin{aligned} & \text { neelination, } \\ & \text { ISvon. } \end{aligned}$
$\begin{array}{ll} 111 . & 27 \\ 6 & 27 \end{array}$	+ 45

1424 (22+4), Star Cluster in Monoceros. Visible on a clear night, with
 somewhat dense cluster of stars, one of which (12 Monocerotis) is of 6 mar.
1452 (2245), Nebula in Monoceros. A very interesting object, fairly bright, comet-shaped, or rather fan-shaped, extending from a star of 10 to 11 mas. The whole is penhaluly $1 \frac{1}{2}$ ' homes.
1t, Monocerotis. Yellowish-white, fi: mat., with at bay faint antupanion (12 mag.). Distance 11", position angle 209.9?
Star in Auriga, 6.3 mag., with a spectrum of the Class IIIb. of Vogel, in which broad absorption bands of hydrocarbons are visible.
y Geminorum, a star of 25 mag. with 2 faint companions at a considerable distance. Burnham gives the following measurements :-

$$
\begin{aligned}
& \text { I 13, distance } 1+1 \%^{\circ} \quad \text { Position angle 335\% } \\
& \text { I1 , 291.7" .. } 1330
\end{aligned}
$$

1435 (2259), Star Cluster in Monoceros. Large, containing about 40 stars of 95 to 12 mag., which are irregularly distributed.
$S(15)$ Monocerotis. The chief star of a coarsely scattered star cluster, 6 mag., with two companions, one 9 mag., distance $3^{\prime \prime}$, the other 115 mag., distance $16^{\prime \prime}$. The primary is surrounded by a thin veil of nebula, and, as discovered by Winnecke, varies about balf a magnitude. The duration of light variability is only 3 days, $10^{\mathrm{h}} 38^{\mathrm{m}}$. The colour of this star is described by Struve as green ; it is now yellowish.
12, Lyncis. Triple, $5 \cdot 5,6 \cdot 1$, and $7 \cdot 4$ mags. Discovered by W. Hersihe] in 1780 . The nearest companion is at a distance $1 \cdot 4^{\prime \prime}$; the further at distance $8.7^{\prime \prime}$.
ε Geminorum. This white star, of 3.5 mag., has a companion of 9 mag., at distance 111", position angle 94 .
 companion 8 mag., at distance $48^{\prime \prime}$, position angle 21 .
$\mathbf{\Sigma} 958$, Lyncis, 6 mag., consisting of two white stars of almost equal magnitude, at distame ol'. $^{\prime \prime}$.
a Canis Majoris (Sirius). The most brilliant star in the heavens, and at the same time the most remarkahle of the double stars, for lexsel showed.
 slight periodical motion, which could be explained only on the assumption of its being a double star, the relatively feeble companion being invisible This assumption has been fully confirmed since, for Clark, on 31 January, 1862, discovered with his $18 \frac{1}{2}$-inch refractor this companion as a star of 10 mag . The period of revolution is 48.8 years, and the distance of Sirius from the common centre of gravity of both stars, $23^{\prime \prime}$. If we assume the parallax of Sirius to be $0.193^{\prime \prime}$, the true distance separating the two bodies
 is 14 times that of the sun, and of its companion 7 times. The distance of
 traverse it. The spectrum of Sirius shows numerous fine dark lines, of

	ITectin.tion.
1. 11	。
(1) 42	+ +1 111
64	-34
(i) 4 ;	-

barium. Besides the companion of Bessel's calculation, Burnham saw in the neighbourhood of Sirius, through the Yerkes 40 -inch instrument, a number of extremely feeble stars of the 13 to 16 mag.

1451 (2281), Star Cluster in Auriga. Fairly rich, coarsely scattered, with a double star near the middle. Discovered by W. Herschel, 3 February, 1788.

1453 (2286), Star Cluster in Monoceros. Coarsely scattered, not rich, contains stars of 8 to 11 mag.

1454 (2287), Star Cluster in Canis Major. A magnificent object, lescribed and recognised as a star cluster by Messier. The smallest astronomical telescope will suffice to distinguish separate stars in it. Seen with the lowest power of a refractor, the whole field of vision seems full of stars of various magnitudes. A splendid sight!

14, Lyncis. A very difficult double star. The primary is 6 mag., and of a golden colour; the companion $7 \cdot 1$ mag., and of a purple red, according to Struve. Distance $0.9^{\prime \prime}$, position angle 51°; the latter is slowly increasing, while the distance seems to diminish. A powerful instrument is required to divide the companion from the primary.

1465 (2301), Star Cluster in Monoceros, 20^{\prime} in diameter, rich in small stars. Near the centre there is a triple star 8 and 9 mags., for which Buruham (1880) gives the following measurements: A B, distance $20 \cdot 9^{\prime \prime}$, position angle 80°; A C, distance $8 \cdot 6^{\prime \prime}$, position angle $281 \cdot 9^{\circ}$.

38, Geminorum. Primary, $5 \cdot t$ inag. and yellowish, companion $7 \cdot 7$ mag. and blueish. Distance $63^{\prime \prime}$, position angle 162° (1890). The colours of both stars are relatively intense.

1467 (2304), Star Cluster in Gemini. A triangular cluster consisting of small stars densely crowded. The whole, in the average telescope, looks like a nebula. Discovered by W. Herschel, 30 December, 1783.
μ Canis Majoris. A yellowish star 4.7 mag., with a blueish companion 8 mag., distance $3^{\prime \prime}$ (1887), slowly decreasing, position angle 340°.
$1474(2312)$, Star Cluster in Monoceros, consisting of a large number of coarsely scattered stars of 10 to 11 mag.

1479 (2318), Star Cluster in Canis Major. Somewhat scattered, 20' in diameter. The stars are from 8 to 11 mag. Discovered by Herschel, 8 February, 1785.
≥ 1009, Lyncis. A double star, 6.7 and 6.8 mags., both of a brilliant white colour. Distance $3^{\prime \prime}$, position angle 159°; this latter has probably decreased since Struve took the measurement in 1830 .
ζ Geminorum. A star of a deep yellow colour, 4 mag., recognised as variable by J. Schmidt in 18 ± 4. The variation of brightness $=0.8 \mathrm{mag}$., and lasts 10 days $3^{\mathrm{n}} 42^{\mathrm{m}}$. The decrease in brilliancy is somewhat more rapid than the increase. ζ has two companions, 7 and 10.5 mags. The first at distance $94^{\prime \prime}$, position avgle 352°, the latter $87^{\prime \prime}$, position angle 84°.

1483 (2323), Star Cluster in Monoceros. Discovered by Messier, 5 April, 1772, and described by him as a cluster of small stars of different magnitudes, near to a star of 7 mag . The cluster consists of stars ranging from 8 to 13 mag., one of them being red in colour. Diameter 30^{\prime}.

$\begin{gathered} 31 \\ 1 ; \\ 1 ; \end{gathered}$	- 1.729
71	+22 $\quad \because$
7	+ $\because 2$
7 i	$+1111$
t	-2614
711	$+1: 3$
$7 \quad 12$	+ $11 i$
$71!1$	$+7 \because 11 \mathrm{i}$
$\bigcirc 13$	$-1: \%$
7 1:3	-17
715	+ $\therefore=$
7 15	- 16i 13
- 11	$+2211$
717	-24 46

 variahle.

 Schoenfeld, the brilliancy of the star at maximum is often the same for weeks at a time
1490 (2331), Star Cluster in Gemini. Discovered by W. Herschel, 11 March, 1785. A coarsely scattered cluster which coutains within it ...|f another cluster of small size. This latter, Posse says, consists of six or ceven stats of fimm 10 (1) fia matr
F_{i} Canis Minoris. A variable star, discovered at Bonn Observatory in 1854. At maximum it scarcely reaches 7 mag . ; at minimum it is 9%, sometimes 10 mag . Period, about 338 days. This star has so far received but little attention.
δ Canis Majoris. A red star, 2 mag., considered by Gould to be variable.
1.508 (2355), Star Cluster in Gemini, consisting of numerous stars of 10 mag. and under. Irregularly round in shape and rather denser towards the centre. The whole is 4^{\prime} in diameter.
λ Geminorum. A star of 3.5 mag., of a greenish-blue light, with a companion 10.3 mag., distance $10^{\prime \prime}$, position angle 31 .
£ 10.51, Camelopardalis. Triple; found to be so by Struve. The primary is 7, the nearer companion 9, the farther 7 mag. The former is at distance $1^{\cdots \prime \prime}$, position angle 2688°, the latter at distance $31^{\prime \prime}$, position angle $81 \cdot 5^{\circ}$.
1511 (2359), Nebula in Canis Major. A large nebuln, discovered by
 parallelogram in shape, with a streak towards the south. The nebula has been imperfectly sketched by J. Herschel and Lassell. The hest representation is that of Tempel. (Vide Sheet XVIII.)
1512 (2360), Star Cluster in Canis Major. Discovered by Caroliue Hotselnel. Latere and rathe dense.
1.9, Lyncis. A star of 5.5 may., with a companion 15% mag., distance $15{ }^{\prime \prime}$ ".
R Canis Majoris. A variable of the Algol type, discovered by Sawyer, 1887. The star is usually of 6 mag., but sinks to 67 mas. in its perioul of I day $3^{\text {h }}$ and 16^{m}, the variability lasting only five hours.
δ Geminorum. A yellowish star, $3 \cdot 2$ mag, with a reddish companion 8.2 mag. Distance $7^{\prime \prime}$, position angle 197°.
1:1:3 (23i;2), Star Cluster in Canis Major. Fairly large, contains

 angle 78°.

7	$2 \because$	-11	21
7	20	-	3
7	27	+1.5	2.5

$7 \quad 27$ 1 $78: 3$

1534 (2395), Star Cluster in Gemini. Fairly rich, contains about 40 stars of 10 mag, and several fainter ones. Lord Rosse saw in this place 70 stars of 11 mag. and under, within a space 15^{\prime} diameter.
$\Sigma 1097$, Navis. A star of 6.5 mag. with four companions. The primary (A) has a companion (B) at distance $20^{\prime \prime}$, position angle 313°, and another companion (C) at distance $23^{\prime \prime}$, position angle 156°. In 1875 , Dembowski discovered that \mathbf{A} is itself double, having a companion 8 mag., $\mathrm{d} .=08^{\prime \prime}$, $\mathrm{p} .=169^{\circ}$. Then Burnham found another very faint star, $\mathrm{d} .=32^{\prime \prime}, \mathrm{p} .=43^{\circ}$.
"U Monocerotis. A variable star, identified as such by Gould in 1872. At maximum it is 6 mag., at minimum somewhat under 7 mag. Period of variability, 46 days.

1541 (2404), Nebula in Camelopardalis. Very large, rather elongated, moderately bright, with an increase of brilliancy at the centre.

S Canis Minoris. Recognised as variable by Hind in 1856. At maximum it is sometimes 7 , but often only 8 mag ; ; at minimum less than 11 mag. Period 330 days.
a Geminorum (Castor). One of the most beautiful double stars in the heavens, $2 \cdot 7$ and $3 \cdot 7$ mags. It can be divided with a small telescope (distance $6^{\prime \prime}$). Both stars give a greenish light. The period of revolution round their common centre of gravity is about 1000 years. Near by are two stars 10 and 11 mag. Belopolsky discovered in 1896 that the principal of a is a spectroscopic double star, of which the period of revolution is 291 days, but no telescope can separate the components.

1549 (2420), Star Cluster in Gemini. A beautiful object discovered by W. Herschel, 19 November, 1783. The stars are numerous and densely crowded. Diameter 6 .
Σ 1121, Navis. A double star, 7 and 7.5 mags., distance $7 \cdot 5^{\prime \prime}$. Close by is the double star $\Sigma 1120,6: 5$ and $9 \cdot 5$ mags., distance $19 \cdot 6^{\prime \prime}$. This belongs to the following eluster.

1551 (2422), Star Cluster in Navis. A rich group, 15^{\prime} in diameter, of small stars rather densely collected. Among them are some fairly brilliant stars. Discovered by W. Herschel, 4 February, 1875.
a Canis Minoris (Procyon). A brilliant star 1 mag. Lamont found in its neighbourhood a feeble star of 11 mag., at $\mathrm{d} .=57^{\prime \prime}, \mathrm{p} .=262^{\circ}$; several still feebler stars in closer proximity to Procyon could not be recognised by Burnham in the 36 -inch instrument. On the other haud, a star of 8.5 mag. at d. $=326^{\prime \prime}, \mathrm{p} .=84^{\circ}$, one of 9 mag. , at $\mathrm{d} .=384^{\prime \prime}, \mathrm{p} .=282^{\circ}$, and one 65 mag., $\mathrm{d} .=643^{\prime \prime}, \mathrm{p} .=100^{\circ}$, have been discovered. The last-mentioned object is a double (Σ 1126) d. $=1 \cdot 5^{\prime \prime}$. Bessel, in 1841, had recognised an irregular proper motion in Procyon, and had concluded from it that the star had a very close invisible companion. Later observations have fully confirmed Bessel's assumption, and the period of revolution has been determined to be 40 years. No one, however, up to the present has succeeded in seeing this companion through the telescope. Assuming, with Elkin, the parallax of Procyon to be $0.266^{\prime \prime}$, the distance separating the principal from the companion is 25 radii of the earth's orbit. The principal has five times the mass of the sun, while the mass of the companion is

 rlowely that wh (1) sum.
 of a yellowish-red colour, and at maximum is scarcely 8 mag. ; at minimum it falls below 13 mag., or, in other words, disappears entirely for the an.m... telescope. Period $29 \pm$ days. The variability is not quite regular.

ப 1127, Camelopardalis. Primary, 6 mag., with one compranion 8 mag., $\mathrm{d}_{0}=52^{\prime \prime}, \mathrm{p} .=340^{\circ}$, and a second (9 mag.) d. $=11^{\circ} 3^{\prime \prime}$, p. $=175^{\circ}$.

1564 (2437), Star Cluster in Navis. Extends over 30^{\prime}, and is visible with a small telescope; discovered by Messier. The stars range from 75 to 11 mag. In this cluster W. Herschel found a faint, planetary nebula 2' in diameter, which Rosse declares to be annular.

1567 (2440), Nebula in Navis. A planetary nebula, somewhat blurred at the enferes. It looks like a netuluus star in matinary telownens.
κ Geminorum, $3 \cdot 5$ mag., with a feeble companion (11 mag.), $\mathrm{d} .=6 \cdot t^{\prime \prime}$, $\mathrm{p} .=236^{\circ}(1874)$.
β Geminorum (Pollux). A brilliant star of 1.5 mag., with several companions, all of which are very faint. W. Herschel saw one of them in 1784, South another in 1825, and Struve a third in 1836. Burnham was the first to obtain a complete view of the whole system, and he discovered that the nearest companion is itself double, 10 and 12.5 mags. respectively, but the distance is so small that the components can be separated only by a very powerful telescope. Burnham gives the following measurements
 E 11 mag., F 10.5 mag.

1 If distance		$31^{\prime \prime}$	Position angle 278
A C	"	188"	72
A E	..	219 "	(10)
1 F	..	243 "	-i,
(11	..	1 "	$1+1$
1: F	.	58"	$8!$
(1) E	..	-1"	11.

The double star C e is a very difficult object, even for the 18 -inch
 $9.5 ;$ E, 9 .
π Geminorum. A star of 5 mag., with a very faint companion 11 mag., distance $23^{\prime \prime}$, position angle 212°.

1571 (2477), Star Cluster in Navis. Discovered by Messier, 8^{\prime} in diameter, and fairly rich in stars of 8 mag. and under.
 dietance : ! ${ }^{\text {" }}$
 star is red, and at maximum is 8.6 mag.; at minimum it is under 1.35 mag. Schoenfeld found that the increase in light becomes much slower when once
 than it loses in brillianey. Period 288 days, with slight lluctuations.
$7 \quad \pi \because 1+2 \quad 3!$

7	\therefore	-10	21

$7.77+9+1 i$
$8 \because-858$
$8+-\ddot{2}$
$86-12: 3$
$\therefore \quad 7 \mid+17 \quad 57$
$7-1 \underline{3}$
$8 \quad 9-\therefore \quad \because 1$
$811+1 \because \because$
$8161+17: 3 ;$
$21+27 \quad 16$
$821+24 \quad 52$
$\therefore 26+182-$
$\therefore \quad: \quad 1^{1}+i$ 汹
$\therefore \quad \therefore+20 \quad 20$

- : : $5+1!12+$

U^{\top} Geminorum. Recognised as variable by Hind in 1855, and one of the most remarkable stars of its kind. The star is generally very faint, and without essential change, but at uncertain intervals it suddenly increases to 9 mag. Schoenfeld saw it gain as much as three magnitudes in 24 hours. No certain period can be given.

14, Canis Minoris, 55 mag., with two companions 7 and 8 mags., distances $76^{\prime \prime}$ and $112^{\prime \prime}$, position angles 66° and 153°.

1611 (2506), Star Cluster in Monoceros. A somewhat crowded cluster of stars, ranging from small to very faint. According to W. Herschel, who discovered the cluster 23 February, 1791, the crowded part is 5^{\prime} to 6^{\prime} in diameter.

1617 (2510), Nebula in Canis Minor. Fairly faint, small (30"), elongated, with sudden increase of brilliancy at the centre.
± 1183, Monocerotis. A yellowish-white star of 5 mag., with a companion 8 mag., distance $31^{\prime \prime}$.

29, Monocerotis. A yellowish star 6 mag., with two faint companions 9% and 9 mags., distances $31.6^{\prime \prime}$ and $67^{\prime \prime}$, position angles 105° and 245°.

1630 (2539), Star Cluster in Navis, 20^{\prime} in diameter, coarsely scattered, rich in small stars, among them a double star. Discovered by W. Herschel, 81 January, 1785.
$\%$ Cancri. A triple star, consisting of a double star 5.5 and 6 mags., distance only $1^{\prime \prime}$, and a farther companion 5.5 mag., distance $5 \cdot 4^{\prime \prime}$. W. Herschel saw the inner companion in 1781, but later on, neither he nor South could distinguish it. Struve was the first to find it again in 1826. It seems, from observations made by M. Seeliger and M. Harzer, that a dark body is a companion of the nearest satellite.

1632 (2.542), Navis. A nebulous star, 5.6 mag .
1637 (2548), Star Cluster in Monoceros. Fairly large, and crowded with stars of 9 mag ., also a pretty double star.
R Cancri. Discovered to be variable by Schwerd in 1829. The star is yellowish-red, at maximum 6.5 , at minimum 12 mag. The period is 35.3 days, and seems to be gradually lengthening.
V Cancri. Found to be variable by Auwers in 1870. At maximum it is under 7 mag., at minimum less than 12 mag. The period is nearly 272 days.
ϕ^{2} Cancri, 6 mag., with a companion 6.5 mag., distance $5^{\prime \prime}$; divided long ago by C'hr. Mayer.
\boldsymbol{v}^{1} Cancri, 6 mag., with a companion 7 mag., distance $6^{\prime \prime}$.
θ Cancri. A yellowish star 5.5 mag., with a companion 9 mag., distance 61".
$\Sigma 1245$, Hydrae. A star 6.5 mag., with a somewhat fainter companion, distance $103^{\prime \prime}$, position angle 25°. No change in position has been noticed during the last 60 years.

1681 (2632), Star Cluster in Cancer. Visible to the naked eye; the so-called "Presepe." With a telescope this cluster, which is very rich in stars, can be easily resolved. Gould has photographed and measured it.

S Cancri. Found to be variable by Hind in 1848. This somewhat

$$
=11 i+i 1+1
$$

$$
\therefore \quad 11 i+1111
$$

$$
\therefore+7+33+8
$$

$$
8+7-1 i
$$

$$
\therefore \quad 1: 3+\because 3
$$

$8-11-8+3$
$8+3$
$\therefore \quad \therefore 2+4827$
$\therefore \quad \therefore+1 \ddot{3} 1$.
$\therefore \pi+303$
$\therefore . \pi+2818$
$311+3113$
$\ddot{\because}+i i . \quad \because \underline{Y}$
$3 \quad \because+23 \quad 23$

 l. $11 .: 8 \frac{1^{11}}{2}$, the increase 13^{11}.

1691 (2655), Nebula in Camelopardalis. Fairly l,right, and tolerably large, with an increase of brilliancy towards the centre, at first gradual, then sulden.
: Hydrae. I yellowish star, 3 S' mač, "ith : hhmish companion t: mag., distance $35^{\prime \prime}$. Holden, with the great refractor at Washington, saw another very faint companion, $\mathrm{d} .=20^{\prime \prime}, \mathrm{p} .=192^{\circ}$. Schiaparelli finds the primary to be itself double, 4.5 and 5 mags., $\mathrm{d} .=0 \cdot 2^{\prime \prime}$.

1711 (2681), Nebula in Ursa Major. Fairly brilliant, large, brighter at tirst ermatually, then sumbenly wowats the mentre, Whete is at stat 10 mag.

1712 (2682), Star Cluster in Cancer. Discovered by Messier, and describual as a star chnster with medula. Hersehel restheal the whale intu stars of from 8.5 to 12 or 13 mag. They number over 200. There does

1713 (2683), Nebula in Cancer. A very faint nebula, followed by a star of s. mag. Rathere mone luilliant towarla the centre.

15, Hydrae. This star, 6 mag ., has (as discovered by Herschel) a companion 7 mag., at distance $45^{\prime \prime}$, position angle 358°. Burnham divided the primary into two points of light at $\left(1.9^{\prime \prime}\right.$ distance, and found an additional companion at distance $51^{\prime \prime}$, position angle 53^{3}
S Hydrae. Variable, discovered by Hind in 1848. The star is at yellowish-red. At maximum it is sometimes $7 \cdot 5$, though often only 8.5 mag., at minimum it is under 12 mag. Period 257 days.
σ^{2} Cancri, 6 mag., with a companion 6.5 mag ., distance $1.5^{\prime \prime}$.
T Hydrae. Found to be variable by Hind in 18.51. At maximum seems to be 7 mag., though often only 8 mag ; at minimum it is under 13 mag. Period 289 days.

Ursa Majoris, :" makr, with a "ompraion In mag.. "listance la". position angle 353°.
a Cancri. A star of 4.5 mag. with a very faint companion 12 11as... distance $11 \cdot 4^{\prime \prime}$, position angle 325°.
 distance $43^{\prime \prime}$, position angle 137°.
 distance $103^{\prime \prime}$, position angle 323°.
$1750(2742)$, Nebula in Ursa Major. Rather faint, but extensive.
 wneven chanacter.
σ^{2} Ursae Majoris, 5 mag., and somewhat greenish, with a companion 8 mag., distance $2^{\prime \prime}$, position angle 224° (1889).
Σ 1311, Cancri. A star of 7 mag., with a companion of equal brilliancy, distance $7^{\prime \prime}$.

$\begin{gathered} \text { Right } \\ \begin{array}{c} \text { Ascension. } \\ 1900 . \end{array} \end{gathered}$	$\begin{aligned} & \text { Declination. } \\ & \text { 1900. } \end{aligned}$
	- i11
10 S0	+ ? 111
10) : 2	+ 54
1038	$+6918$

$1038+25$
$1039+1214$
$1038+i$
$1042+1 \because 2$
$104: i$
$10+1: 3$
$1045-822$
$1048+373$
$1050+25 \quad 17$
$1054+5927$
$111.5+2!3$
$1056+415$
$1058+6218$
$110.7+36$
$1059+28: 3$
$111+11: 3$
$111 i+i f 1$ 1"

49 , Leonis, 6 mag., with a companion 9 mag., at distance $2 \cdot 4^{\prime \prime}$, the position of which does not seem to alter.

2158 (3310), Nebula in Ursa Major. Planetary, with blurred edges, containing 2 stars of 10 mag.
R Ursae Majoris. A rariable star, recognised by Pogson in 1853. At maximum it is sometimes 6 , though often only 8 mag., at minimum 13 mag. Period 302 days. 2178 (3344), Nebula in Leo Minor. Fairly bright, with an increase of brilliancy towards the centre. There is a star surrounded by the nebula. Tosse sees spiral coils round a luminous centre.

2184 (3351), Nebula in Leo. Discovered by Méchain, and described as a very faint starless nebula; it really is fairly brilliant, large, and round, brighter at the centre, with a nucleus resembling a star of 10 mag.

35, Sextantis, 6 mag., with a companion 7 mag., distance $7^{\prime \prime}$, position angle 240°.

2194 (3368), Nebula in Leo. Very brilliant, irregularly round in shape, with a nucleus, probably resolvable.

2203,2207 (3379, 3384), Nebula in Leo. Double, fairly brilliant and large; the second nebula has a nucleus like a star of 9.5 mag. A third very faint nebula follows and forms a triangle with the other two.
41, Sextantis. Triple. The primary is 5, the farther companion 9, the nearer 11 mag. Burnham gives (1879) the following measurements: A B, d. $=26.9^{\prime \prime}, \mathrm{p} .=304^{\circ} ;$ A C, d. $=233^{\prime \prime}, \mathrm{p} .=72^{\circ}$. The nearest companion is not visible except in a powerful telescope.
2245 (3440), Nebula in Ursa Major. Fairly brilliant, of moderate size, and irregularly circular in shape, gradually brighter towards the centre. Followed to the northward by a star 10 mag ., distance 2'.

54 , Leonis. A star 4.5 mag., with a blueish companion 7 mag., distance $6^{\prime \prime}$.
玉 1495, Ursae Majoxis, 6 mag., yellowish, with a companion 8 mag., distance 35".

2274 (3486), Nebula in Leo Minor. Large, brilliant, supposed by Herschel to be a globular star cluster at an immeasurable distance.

2279 (3494), Nebula in Leo. According to Tempel, this is a large and thick spindle-shaped nebula 5^{\prime} long by $1 \cdot 5^{\prime}$ broad, with 3 distinct nebula nodes in its major axis. In all of these faint stars are visible. About 6^{\prime} north of the middle node, Tempel repeatedly observed a small nebula.
a Ursae Majoris. Seen as a double star by the large telescope at Mount Hamilton, $\mathrm{d}_{\mathrm{o}}=0.9^{\prime \prime}$. Spectrum of the IIa. type of Vogel, departing widely from the solar spectrum. companion, distance $245^{\prime \prime}$, position angle 354°.
2287 (3512), Nebula in Leo Minor. Fairly brilliant, with what looks like a nucleus in the centre. According to Herschel, this nebula is really a resolvable star cluster.

2301 (3521), Nebula in Leo. Fairly large, oval, with a star-shaped nuclens. Several stars follow it.

2318 (3556), Nebula in Ursa Major. Discovered by W. Herschel,

$\begin{gathered} \text { Iivelit } \\ \text { I4 +11-1011. } \\ 1: 101) . \end{gathered}$	Inceltu, athorn. 1900	
h. ${ }^{\text {m. }}$		7 April, 1789, elongated, fairly brilliant, with a star in the centre. According to Herschel, however, the latter is merely accidentally projected on the nelnuta.
11 :	+ in : 1	2343 (3587), Nebula in Ursa Major. Large, planetary, discovered by
1111	+ $\therefore 31!$	≥ 1520, Ursae Majoris. A star of 65 mag., with a companion 8 mag., distance $13^{\prime \prime}$.
1111	+ 18:	2352 (3599), Nebula in Leo. A faint nebula, considered by d'Arresi to be variable. Schoenfeld found it to be brilliant in 1861, but in 1863 it was occasionally invisible. At present it is very faint.
$111 \geq$	+ 312	2360 (3610), Nebula in Ursa Major. Fairly brilliant, but small, with a nucleus.
11 1:	+ is	2362 (3613), Nebula in Ursa Major. Fairly brilliant, of moderate size. much brighter towards the centre, with what seemis to lee a mellens.
$111:$	$+: i$	ξ Ursae Majoris. A yellowish star, 4 mag., with a greyish-white companion 5 mag. This latter moves with great rapidity, its period of revolution heing ouly til rears. Distance in ls!e, ! fri".
11 1:3	+ :3.3	ν Ursae Majoris. Yellowish, 4 mag., with a very faint companion 10.5 mag., distance $7^{\prime \prime}$, position angle $147^{\text {? }}$.
1115	+ 13: $: 3$	2373,2377 (3623,3627), Nebulæ in Leo. Nouble, fairly brilliant, the succeeding one being brighter. The nebulæ are spiral-shaped with central nuclei which seem to be surrounded by elliptical rings. The nebula 2373
$111!1$	+ 11	Leonis. A yellowish star 4 mag., with a blueish companion 7 mag, $\mathrm{d} .=28^{\prime \prime}, \mathrm{p} .=65^{\circ}$.
112	- 17 8	y Crateris. A star of 4 mag., with a companion, discovered by W. Herschel, of 10 mag., at distance $5^{\prime \prime}$, position angle 98° (1877).
11 23	+ 3.2 .5	т Leonis, 5 mag., yellowish, with a white companion 7 mag., distance $94^{\prime \prime}$. Easily observed.
11 -3	+39 -33	57, Ursae Majoris, 5 mag., with a companion 8 mag., distance $5 \cdot 4^{\prime \prime}$, position angle 7°.
$11 \times$	2 S 43	In Hydra. Two stars, $5 \cdot 5$ and $6 \cdot 5$ mags., distance $8 \cdot 7^{\prime \prime}$.
1127	- 14 -6	88, Leonis. Yellowish, 6 mag., with a faint companion 8 mag., distance $15^{\prime \prime}$, position angle 320°.
$11: 3$	$+17 \quad \because 1$	90 , Leonis. A star of 6 mag., with a companion 7 mag., distaure :. 9.5 mag.
11 : 1	$+1.511$	£ 1561, Ursae Majoris, 6 mag., with a companion 8 mag., distance $10^{\prime \prime}$.
$111: \%$	$+20$	93 , Leonis, 5 mag., with a companion 84 mag., distance $7 t^{\prime \prime}$, position anclu: : :
1144	$+15$	β Leonis, 2 mag., with a very beautiful spectrum, has two faint - tir* in its vicinity. Burnham gives the following magnitudes and positions

$\begin{aligned} & \text { Liuglit } \\ & \text { Ascension. } \\ & 1900 . \end{aligned}$	
1. m.	
$11: 38$	$+38$

$114 x+353$
$1150+47 \because$
$11 \pi t+\pi 131$
$1158+45.5$

$1211+411:$
$1211+1: 342$
$1213-: 3$
$1214+14$ i!

Star in Ursa Major of 8 mag. Of all the stars visible in our northern heaveus this has the greatest apparent proper motion, amounting to $7 \cdot 05^{\prime \prime}$ yearly:

2600 (3941), Nebula in Ursa Major. A fairly brilliant nebula 3^{\prime} to 4^{\prime} in diameter, with an increase of density towards the centre.

65, Ursae Majoris, 5.6 mag., with a blueish companion 8.5 mag , distance $3.7^{\prime \prime}$. There is also a star of 65 mag. at distance $114^{\prime \prime}$.

2635 (3992), Nebula in Ursa Major. A faint nebulous appearance between two stars, 7^{\prime} long by 4^{\prime} broad, according to Herschel. Tempel estimates it as at the most only $2 \frac{1}{2}{ }^{\prime}$ in diameter, and says he sees 3 brilliant stars round its speckled centre.

2660 (4026), Nebula in Ursa Major. Discovered by W. Herschel, 12 April, 1789 , brilliant, 5^{\prime} long by $1 \frac{1}{2}{ }^{\prime}$ broad, increasing in brightness towards the centre, with a brilliant nucleus.

2680 (4051), Nebula in Ursa Major. Brilliant, fairly large, with a sudden increase of brightness towards the centre. Rosse finds it to be of spiral structure.
2, Comae Berenices, 6 mag , with a companion $7 \cdot 5 \mathrm{mag}, \mathrm{d} .=4^{\prime \prime}$, $\mathrm{p} .=240^{\circ}$.
(4111), Nebula in Canes Yenatici. Fairly bright, elongated, with a very brilliant nucleus. Discovered by Herschel, 14 January, 1788.

2752 (4147), Star Cluster in Coma Berenices. Of moderate size, very brilliant, globular; the stars are more densely collected towards the centre.
$\Sigma 1606$, Canum Yenaticorum. A star of 6 mag., with a companion 7 mag., distance $1 \cdot 4^{\prime \prime}$.

2786 (4192), Nebula in Coma Berenices. A large pale nebula 15^{\prime} long, with a star-like centre. Discovered by Méchain, 5 March, 1781. Tempel found another small round nebula to the southward.

2, Canum Venaticorum. A reddish star 5.5 mag., with a blueish companion 8 mag., distance $11 \cdot 4^{\prime \prime}$, position angle 260°. The colours are fairly decided.

2806 (4216), Nebula in Virgo, 9^{\prime} to 10^{\prime} long, brighter in the centre. Discovered by Herschel, 8 April, $178 \pm$. It is spindle-shaped, and Tempel saw two accompanying nebule. The one preceding it to the south is 5^{\prime} long, oval in shape, and has 3 brilliant nodes; it is situated towards the centre of the principal nebula: $35^{\circ}-6 \frac{1}{2}^{\prime}$. To the south there follows a small star 10 to 11 mag. The companion nebula on the north, which follows it, is round, 1^{\prime} in diameter, and very faint.
≤ 1627, Virginis, 6 mag., with a companion 65° mag., $\mathrm{d}=20^{\prime \prime}, \mathrm{p} .=196^{\circ}$. 2838 (4254), Nebula in Coma Berenices. Discovered by Méchain, 15 March, 1781, and described as a starless nebula. Vogel observed it with the 8 -inch refractor at Leipsic, and found it to be large, brilliant, and apparently resolvable at the centre, where there are two bright starry points. With magnifying power 192, a spiral arrangement was visible.
$121 t+45 \quad 52$
2841 (4258), Nebula in Ursa Major. Brilliant, with a nucleus, fairly large. Discovered by Herschel. No trace of resolvability. A continuous spectrum shows that this nebula is a very distinct star cluster.

$\begin{gathered} \text { Right } \\ \text { Ascension. } \\ \text { 1900. } \end{gathered}$	Declina 199		
$12 \quad 31$	$+\begin{gathered} 0 \\ +13 \end{gathered}$	7	3097 (4552), Nebula in Virgo. Discovered as a very faint starless nebula by Messier; it is round and brighter towards the centre. Vogel observed it with the Leipsic Refractor, and describes it as very brilliant, 2^{\prime} in extent, suddenly denser at the centre, with a brilliant nucleus.
$12: 1$	$+28$	31	3101 (4559), Nebula in Coma Berenices. Fairly bright and large, gradually more brilliant towards the centre. Three stars follow it,
1231	$+11$	59	3105 (4568), Nebula in Virgo. A faint, double nebula, coming into view at the same moment as two others still fainter. Tempel has made a map of the whole, including the neighbouring stars.
12: 1	+ $\because 6$	32	3106 (4565), Nebula in Coma Berenices. A somewhat faint nebula, very long (15^{\prime}) and 3^{\prime} to 4^{\prime} in breadth, brighter towards the centre, with a nucleus like a star of 10 mag. Preceded by four faint stars.
1232	$+60$	2	T Ursae Majoris. Recognised as variable at Bonn in 1860. At maximum it is sometimes 6, though often only 8 mag.; at minimum under 13. Period $25{ }^{\circ}$ days. The star is of a reddish-yellow colour.
1233	$+12$	2.2	3121 (4579), Nebula in Virgo. Discovered by Messier in 1779, and described as a very faint nebula. John Herschel calls it brilliant, large, irregularly round, bright towards the centre, and probably capable of being resolved into stars.
1こ: $3:$	+		R Virginis. A reddish-yellow star, whose variability was recognised l,y Harding in 1809. At maximum it is 6.5 to 8 mag.; at minimum 10 to 11 mag. Period 145 days.
12 : $3+$	- 20	12	3128 (4590), Nebula in Hydra. Discovered by Messier in 1780, and described by him as a very faint starless nebula not easy to distinguish. Near it is a star of 6 mag. In 1786 the nebula was resolved into separate stars by F. W. Herschel's 20 -foot reflector, these being very densely collected towards the centre. The cluster is 4^{\prime} long by 3^{\prime} broad.
1235	-11	4	3132 (459t), Nebula in Virgo. An elongated, elliptical nebula, brighter at the centre. With a low magnifying power, several stars come into view at the same time as the nebula.
1236	-12	28	$\Sigma 1669$, Virginis. A star of 6 mag., with a companion of nearly equal magnitude. Distance $5 \cdot 8^{\prime \prime}$.
$13: 3$	- 11		γ Virginis. A yellowish star 3 mag., with a somewhat fainter companion. This latter is at present easy to observe (d. $=5 \cdot 6^{\prime \prime}, \mathrm{p} .=153^{\circ}$, 1892): its period of revolution is 180 years. There is also another faint $\operatorname{star}\left(115\right.$ mag.), d. $=53^{\prime \prime}, \mathrm{p} .=159^{\circ}$.
1:3	$+3: i$	$1 ;$	3165 (4631), Nebula in Canes Venatici. A strip of nebula 12^{\prime} long, but faint, with a small star in the centre.
12: 3	+		3176 (4643), Nebula in Virgo. Somewhat faint, starless, brightest at the centre.
1239	$+12$	6	3182 (4649), Nebula in Virgo. Discovered by Messier, who, however, did not see a faint nebula which precedes it. Somewhat faint. As seen with the Leipsic refractor, it seems capable of being resolved into stars.
1240	+61	38	S Ursae Majoris. Of a reddish-yellow, recognised as variable by Pogson in 1853. The changes of brilliancy are somewhat irregular. At maximum it is 7 , at minimum 10 , sometimes 11 mag. The period of 226 days is, apparently, slowly increasing.

	$\begin{gathered} \text { Devellinatiun } \\ 1900 . \end{gathered}$		
	$+11$		ェ 1678 ，Comae Berenices， 6 mag．，with a companion 7 mag．，distance ：：：$: "$
$121: 3$	－	1.	3227 （4697），Nebula in Virgo．Fairly large，but not very brilliant increasing in brilliancy towards the centre，with a kind of nucleus，which Herschel thought resolvable into stars．
1214i	－！	1.	$\mathrm{d} .=34^{\prime \prime}, \mathrm{p} .=309$ ．
121；	$+11$	111	$3258(4736)$ ，Nebula in Canes Yenatici．Discovered lyy Méchain，and described hy him as a starless nebula，of fair brilliancy， $2 \cdot \sigma^{-1}$ in diametw． with brilliant centre．Several stars come into view at the same moment a－ this nebula，one of them a double star，which follows it．According to Rosse it is of a spiral form．
1－1	＋ 1	1－3	U Virginis．Recognised as variable hy Harding in 1831．The star is 2い day．
1－1	$+11$	11.	$3: 28(4762)$ ，Nebula in Virgo．Two faint nebule at 8^{\prime} to 10^{\prime} distan．．．． from one another．Discovered by W．Herschel on 15 March，178\＆．The preceding nebula is long and thin，and has an elongated nucleus．
$1 \because 14$	$+21$	1	35 ，Comae Berenices， 5 mag．and yellowish，with a blueish companion 8 mag．，distance $12^{\prime \prime}$ ，and a second companion ？mag．， $\mathrm{d} .=28^{\circ} 3^{\prime \prime}, \mathrm{p} .=124^{\circ}$
1こ．	-12	11	：3293（4792），Nebulæ in Virgo．Double，faint，with other small，faint nebulæ in the vicinity．Tempel has made a map of this group of ni－hula．
12.11	$+38$	2	12，Canum Yenaticorum．The brightest star in the constellation，and known by the name of＂Cor Caroli．＂The star is 3 mag．，and has a com－ panion 6 mag．at distance 20 ＂，in whose position no change has yet been nliserved．
12．22	＋ 54	38	$\Sigma 169)^{\circ}$ ，Ursae Majoris， 6 mag．，with a companion 8 mag．， $\mathrm{d}_{\mathrm{g}}=3^{\prime \prime}$ ， $\mathrm{p}=2899^{\circ}$ ．
$1 \because 24$	＋14	4：	33 42 （48i6），Nebula in Coma Berenices．A brilliant nebula of fair size with a core－like density at the centre．There is a small star in this nebula．
	$+11$	311	$\mathrm{d} .=241^{\prime \prime}, \mathrm{p} .=120^{\circ}$ ．
1：	$+18$		42，Comae Berenices．Two stars of 6 mag．，but whose rlistance is so small that they may be considered one of the most difficult of double stars． Struve，who discovered their duplex character in $18 \because 7$ ，could generally only distinguish an elongated star，actual division being only occasionally possible．Dembowski too，in 1863，saw only an elongated star；Burnham， however，in 1879 ，measured the distance as $0.6 \overline{7}^{\prime \prime}$ ，position angle 192° ． Since 1882 the division has been easier than heretofore，but still requires an instrument of the first class．The period of revolution is 2.57 years．
1．：	＋$\because: 1$		$1.5,17$ ，Canum Yenaticorum．Two stars of nearly equat brilliancy， $5: 5$ mag．The distance is $4^{\prime}: 30^{\prime \prime}$ ，yet they cannot be divided without a 1．11～いいい。
1．：		11	＂Virginis． \qquad わりい。 \qquad 1.11 .3

$1: 3+4 i$

3437 (5005), Nebula in Canes Venatici. A fairly brilliant nebula, $\mathbf{i b}^{\prime}$ long by 1.5 ' broad, discovered by Herschel 1 May, 1785. Increases abruptly in brilliancy towards the centre, where it has what looks like a nucleus.

3453 (5024), Star Cluster in Coma Berenices. Discovered by Messier in 1777, and described as a starless nebula. In reality it is a star cluster in which, according to Rosse, 4 or 5 condensations are visible. A very beautiful object.

3474 (5055), Nebula in Canes Venatici. Discovered by Méchain in 17.9 , and described as a faint and starless nebula. According to Herschel, it is 10^{\prime} long by 4^{\prime}, with a bright nucleus. Huggins finds that it gives a continuous spectrum, which proves it to be a star cluster at an immeasurable distance.
a Virginis (Spica). Professor Vogel announced, 1890, that this consists of two close stars (companion obscure) of equal mass, revolving round their common centre of gravity in 4.013 days.
ζ Ursae Majoris, 2 mag., and greenish-white, with a companion $4 . \overline{3}$ mag., distance 14". One of the most beautiful double stars in the heavens. At $11^{\prime} 47^{\prime \prime}$ distance from ζ is g or Alkor, and, in addition, a star 8 mag., distance $8 \cdot 5^{\prime}$, together with sereral fainter ones. Pickering found in $188!9$ that the line k in the photographic spectrum of this star appeared to be subject to rapid changes, becoming feebler and doubled. He concluded rightly from this that ζ is an irresolvable double star, its companion having a period of revolution of 104 days. The components are at a distance from each other of at least 143 millions of miles, but are not, however, separable in the telescope.

IV Virginis. Recognised as variable by Schoenfeld in 1866. At maximum it is 9 mag., and at minimum 10 to 10.4 mag. Period 17.3 days. The change of brilliancy is very uniform.
R Hydrae. A deep red star, recognised as variable by Maraldi in $170 t$. At maximum it is 3.5 to 5.5 mag., at minimum 10 mag. Period 425 days ; formerly it seems to have been longer.

3572 (5194), Nebula in Canes Venatici. Discovered by Messier in 1773 , and described as a faint, starless nebula, but double, each portion being bright in the centre, and $4 \frac{1}{2}^{\prime}$ in diameter. W. Herschel describes it as a brilliant, circular nebula, surrounded by a faint nebular halo and accompanied by a second nebula. J. Herschel's description and drawing were also wrong. Rosse's telescope showed the true structure of the nebula, i.e. a spiral mass which seems to be wound round a brilliant centre (vide Sheet XVI.). These spiral coils have also been clearly distinguished and mapped out by Vogel, with the help of the Leipsic 8-inch refractor. It would thus seem that we have here a mass of a really nebulous character coiling in vast convolutions round an enormous centre, yet spectrum analysis contradicts this theory. The nebula has a continuous spectrum similar to that of the stars, and without any bright lines, which are never absent from the spectra of true incandescent nebulæ. Mr. Roberts' photograph, taken 1889, in four hours' exposure, gives clearer details of the arrangement of this nebula.

$1: 3$	1.	11	lrilliancy is somewhat irregular．At maximum the in ：if m．．．．．．n． times only 8 mag．；at minimum under 12 mag．Period ：376 days．
$1: \%: 3:$	－ 17	\cdots	$3614(5247)$ ，Nebula in Virgo．Faint ；according to Lassell，a spiral with two arms．
$1: \%: 3:$	$+3$.	N	25，Canum Yenaticorum．A star of 5.5 mag．，with a companion 7 mag．，distance（when discovered by Struve in 1829 ） $1 \cdot\left(15^{\prime \prime}\right.$. ．Jumham gave in $1892 \mathrm{~d} .=1^{\prime \prime}$ ．The distance is now increasing again．
$1: 3: 3:$	＋ 1	$\because 1$	3615 （ 5248 ），Nebula in Virgo．Brilliant， 9^{\prime} to 10^{\prime} in length，with two nebulous nodes in the centre．There is one star to the south of it，and nebule in its vicinity．
$1: 3: 3$	＋$\because 11$	$\therefore 1$	I，Bootis，（ $\mathbf{\Sigma}$ 1772）．A star of 6 mag．，with a faint companion 9 mas． distance $4 \cdot 8^{\prime \prime}$ ．
1：：：		．	84，Virginis， 6 mag．，with a companion 8 mag．，distance $: 3.7$＂
1：：：	＋	\therefore ․：	3636 （5272），Star Cluster in Canes Yenatici．Discovered by Messier and deseribed as a brilliant nebula．Herschel first resolved it，in 1783 ，into a star cluster containing upwards of 1000 stars．A splendid object！From the photographic investigation of this cluster at Arequipa，it appears that
1：$: 1 \times$	＋： 17	$!$	3637 （5273），Nebula in Canes Venatici．Of moderate brilliancy，fairly lat－s，wimbar，hinher in the mentre．
$1: 4$	$+15$	\therefore	τ Bootis．A star of 5 mag ，with a very faint companion， $\mathrm{d} .=8 \bar{\sigma}^{\prime \prime}$ ， $\mathrm{p} .=352^{\circ}$ ．
13 44	$+4!$	＋！	η Ursae Majoris， 2.5 mag．This star gives a beantiful spectrum of Vogel＇s Class Ia．，in which a broad somewhat washed－out line appears，similar to that visible in some of the stars of Orion．
1：3	＋ 2	1	τ Yirginis．A star of 4 mag．，with a faint companion 85 mag．， $\mathrm{d} .=79^{\prime \prime}$ ， $\mathrm{p} .=290^{\circ}$ ．
149	＋19	32	T Bootis．A star of $9 \cdot 5$ mag．，seen by Baxendell 9th April，1860；on L1th of April it was 10 mag．，and on 20 th 13 mag．；on the 2.3 rd it lecame invisible，and has not since been seen．
1111	$+\cdots$	111	κ Bootis．A star of 4 mag．，of a greenish－white colour，with a bluci－h ＂ompnaion at 1ぎっ＂＂liatamer．
$1+11$	$+19$	4	a Bootis（Arcturus）．A brilliant star 1 mag．，with a beautiful spectrum （Vogel，Class IIa．）．Its colour is a bright reddish－yellow．At distance 43＂ is a star of 9 mag ．
1／1：3	$+\therefore 1$	－${ }^{\prime}$	Bootis．This star， 45 mag．，has a companion 7.5 mag．，at distance $38^{\prime \prime}$ ．Struve（18：36）saw the primary as double；Mädler，too，in $18+2$. and its duplex nature is therefore doubtful．
1420	$+\therefore 1$	1.	s＇Bootis．A variable star of a reddish colour，discovered at Bonn in 1 s（in）．
1＋ 23	－ 1		Virginis， 5 mag．，with a companion 10 mag．， $\mathrm{d} .=3 \cdot \%^{\prime \prime}$ ，p．$=109$.
$1+24$	－ 5	32	$3900(5634)$ ，Nebula in Yirgo．Of moderate brilliancy，small，condensed at the centre；thought by J．Herschel capahle of being resulvel．
1424	＋－	11	± 1850 ，Bootis， 6 mag．，with a companion 7 mag．， $\mathrm{d}^{\prime}=26^{\prime \prime}, \mathrm{p} .=20^{\circ}$

	$\begin{gathered} \text { Declination. } \\ 1900 . \end{gathered}$	
$\begin{aligned} & 11 \\ & 1+:! \end{aligned}$	$\begin{array}{r} 0 \\ +27 \end{array}$	16
$1+: 3$	+ 11	র
$14: 3$	$+11 i$	if ${ }^{\text {i }}$
1436	+14	9
$1+41$	$+2$	31
144	- 13	44
$1 \pm 1 . i$	- 1.7	
1447	+19	31
$1+4 i$	$+4!$	7
$1+i \underline{ }$	-211	Sif

3964 (5713), Nebula in Virgo. Discovered by W. Herschel 11 April, 1787, and classed by him among the brilliant nebulæ. J. Herschel considered it capable of being resolved into stars.
π Bootis. A star 5 mag., with an easily distinguished companion 6 mag., distance $6^{\prime \prime}$.
ζ Bootis. The primary, 3.5 mag., has two companions; the nearer, 4 mag., is at present so close to the primary that only instruments of the first class can distinguish it. According to Perrotin, the distance in 1883 was $0.6^{\prime \prime}$, the position angle 297°. The farther companion is at distance $90^{\prime \prime}$, position angle 27°.
ε Bootis. One of the most beautiful of the double stars. The primary is 3 mag., and yellow, the companion 6 mag., and blue; distance $2 \cdot 6^{\prime \prime}$. The colours are very decided, and their contrast has a pretty effect.
μ Librae. A star of 5 mag., with a companion of 6 mag. at d. $=1 \cdot 6^{\prime \prime}$, p. $=340^{\circ}$. Burnham, in addition to this, discovered three other feeble companions.
a Librae, 3 mag., with a companion 4 mag., distance $230^{\prime \prime}$.
ξ Bootis, 4.7 mag., and yellowish, with a red companion 6.5 mag. The distance of this latter is rapidly decreasing. In 1882 it was $3 \cdot 9^{\prime \prime}$, while in 1829 it was, according to Struve, $7 \cdot 2^{\prime \prime}$. The position angle is also rapidly changing. The period of revolution seems to be 127 years.

39, Bootis. A double star 6 and 6.5 mags., distance $3 \cdot 7^{\prime \prime}$. The primary is white, the companion reddish.

Anonyma in Libra. A remarkable multiple star. The primary is 6 mag, one companion $(B), 7.5$ mag. The rest are all very faint. Burnham (1878) gives the following measurements :-

$$
\begin{array}{ll}
\text { A B, d. }=15 \cdot 1^{\prime \prime}, \mathrm{p} .=290^{\circ} & \text { A E, d. }=694^{\prime \prime}, \mathrm{p} .=52 \cdot 5^{\circ} \\
\text { A C, d. }=120 \cdot 6^{\prime \prime}, \mathrm{p} .=322^{\circ} & \text { A F, d. }=105^{\circ} 5^{\prime \prime}, \mathrm{p} .=166^{\circ} 5^{\circ} \\
\text { A D, d. }=52 \cdot 5^{\prime \prime}, \mathrm{p} .=171^{\circ} 0^{\circ} &
\end{array}
$$

The primary and the more brilliant companion compose a system with very decided proper motion. The other stars do not really, but only appear to, belong to it.
δ Librae. Variable, and belongs to the Algol type. Schmidt recognised its variability in 1859. Period 2 days $7^{\mathrm{h}} 21 \cdot 3^{\mathrm{m}}$. The changes of brilliancy only occupy 12 hours. At maximum the star is 5, at minimum 6 mag.

4029 (5821), Nebula in Draco. Irregular, faint but large. Discovered by W. Herschel, 5 May, 1788.
$151+482$
$\begin{array}{llll}15 & 7 & -19 & 25\end{array}$

44, Bootis. A yellowish star 5 mag., with a blueish companion 6 mag., distance $5^{\prime \prime}$. Both primary and companion seem to be variable to a slight degree.
, Librae. A star 5 mag., with a companion 9 mag., d. $=57^{\prime \prime}, \mathrm{p} .=110^{\circ}$. Burnham found the companion itself to be double, consisting of two stars of $10 \mathrm{mag} ., \mathrm{d} .=1 \cdot 7^{\prime \prime}, \mathrm{p}=17^{\circ}$.

 panion 7 mag., distance $25^{\prime \prime}$, position angle 10°.

ェ 1926 , Bootis, 6 mag., with a compranion 8 mag., $\mathrm{d} .=1 \cdot \mathrm{c}^{\prime \prime}, \mathrm{p} .=261$ A dillicult homhlu star.
δ Bootis, 3 mag., and white. At distance $105^{\prime \prime}$, is a companion $7 . \%$ mag., position angle 79°, whose position has not changed for 50 years.

4083 (5904), Star Cluster in Serpens. Observed by Messier in 17 (if

 could find in it no trace of stars. Nevertheless, an average telescope shows that it is a cluster of stars and no nebula. Herschel, with his 40 -foot reflector, could distinguish over 200 stars, though towards the centre they were so densely placed that it was impossible to resolve them. Rosse says the cluster is 7^{\prime} to 8^{\prime} in diameter, the stars ranging from 12 to 15 mag. From photographic investigations of this cluster at Arequipa, it appanthat sis of the !um stars intu which it is menlvalle, ane varialluc. The periods of variability lie usually between 11 and 17 hours, and the range of light changes between 13.7 and 14.7 mag. The period of light variability is for all of them fairly alike. It is probable that they are all affectel by a fommon calle wh which we are al pesent ighortht.

5, Serpentis, 5 mag., with a faint companion 10 mag., d. $=10 \cdot 6^{\prime \prime}$,

 corroborated.
Σ 1931, Serpentis, 6 mag., with a companion 75 mag., d. $=13^{\prime \prime}$ $\mathrm{p} .=173^{\circ}$. No change of position has been noticed in last 50 years.
± 1932, Coronae. The primary is 5.5 mag., and has a companion 6 mag.; both white. Distance, according to Hall, 1886, $0 \cdot 9^{\prime \prime}$, position angle 130°.
 Winnecke in 1863. At maximum 75 mag., at minimum 8.9 mag. Period
 $5 \cdot 2^{\text {h }}$. The brilliancy at maximum varies somewhat.
S Librae. Variable, slightly reddish in colour; at maximum only
 irregular. Discovered by Borrelly in 1872.
 but which could no longer be found by Harding in 1817. Its varialility
 under 12 mag. Period 365 days.
S Coronae. Of a reddish-yellow, recognisel as varialle by Hencke in

η Coronae. A yellow star of $5 \cdot 2 \mathrm{mag}$, with a golden-coloured ...m. panion 5.7 mag. ; it is extremely close to the primary, the distance (Engel
 companion 11 mag., $\mathrm{d} .=30^{\prime \prime}, \mathrm{p} .=38^{\circ}$.

	+ i^{-}	μ Bootis. A yellow-greenish star, 4 mag., with a companion (μ^{2}) 6.5
		mag., distance $108^{\prime \prime}$, position angle 172°. This latter is itself double, but, at present, can le divided ouly with a powerful telescope.
1.523	+ 3 ! 19	, Draconis, 3 mag., yellowish, with a companion of 9 mag., $\mathrm{d} .=255^{\prime \prime}$,
15 30	+ 10 i	δ Serpentis. Yellowish, 3.5 mag., with a companion 4 mag., $\mathrm{d} .=3^{\prime \prime}$, $p=197^{\circ}$.
1533	- 828	$\Sigma 1962$, Librae. Two stars 6.8 mag., distance $12^{\prime \prime}$, position angle 189°.
1.) 34	+ $\because 3: 31$	$\Sigma 1964$, Coronae. A star of 7 mag., with a companion 7.5 mag., distance $15.5^{\prime \prime}$. Burnham found that this companion was itself double, d. $=1 \cdot 3^{\prime \prime}, p .=10^{\circ}$.
1.7 36	+ $36 \quad 58$	ζ Coronae, 4 mag., with a companion 5 mag., $\mathrm{d} .=7^{\prime \prime}$, p. $=303^{\circ}$.
1.7 36	+80 47	π^{1} Ursae Minoris, 6 mag., yellowish, with a yellowish companion 7 mag., d. $=30^{\prime \prime}$, p. $=83^{\circ}$.
$1.5: 9$	$+20 \quad 36$	γ Coronae. A greenish-white star, 4 mag., with a reddish companion 7 mag., distance (when discovered by Struve in 1826) $0 \cdot 7^{\prime \prime}$. In the following year it could no longer be divided, and it was not seen again until the end of the fiftieth year, and then only with great difficulty. Even Burnham, in 1880 , found the primary star only, and apparently quite round. Engelmann, however, in 1883-84, occasionally saw it as clearly elongated. The period of revolution of the companion amounts to 85 years.
15) 39	+ 64	a Serpentis. A star of 2.5 mag., with a beautiful spectrum (Vogel, Class IIa.). There is a star of 12 mag., at distance $59^{\prime \prime}$, position angle 353°.
15.42	+15 4	β Serpentis, 3.5 mag., and somewhat hlueish. There is a companion of 9 mag., $d .=30 \cdot 6^{\prime \prime}, p .=265^{\circ}$.
1.714	+28 28	R Coronae. A red star, recognised as variahle by Pigott in 1785. The changes of brilliancy are very irregular, and often imperceptible for years together. At maximum it is 58 mag., at minimum it is invisible even in a most powerful telescope.
$15+6$	+15 26	R Serpentis. Yellowish-red, recognised as variable by Harding in 1826. At maximum it is $5 \cdot 6$, at minimum less than 12 mag. The changes of brilliancy are irregular. Period nearly 357 days.
1.i 4	+ 3111	ェ 1984, Draconis. I star of ti.i mas. with a companion s.i mas. $\mathrm{d} .=6.4^{\prime \prime}, \mathrm{p} .=276^{\circ}$.
1.i i^{\prime}	+38 14	λ Coronae. A stax of 6 mag., with a feebler companion at $\mathrm{d} .=95^{\prime \prime}, \mathrm{p},=.74$
1.7	+33 37	S Coronae. A star of 5.5 mag., with a companion of 11 mag. South fuund for the latter in $1825 \mathrm{~d} .=79^{\prime \prime}, \mathrm{p} .=125^{\circ}$.
1.in	$+2612$	T Coronae [Nova]. A so-called new star, but which was catalogued at Bonn as a star of 9.5 mag. as far back as 1855 . On 12 May, 1866, it was visible to the naked eye, and soon reached the magnitude of \boldsymbol{a} Coronae. On 1:) May, its lrilliancy already began again to decrease; on 20 May, it could only be seen with a telescope; by the middlle of June it was of 9 mag., and had so remaired with but slight variations. At the time of its greatest brilliancy, it was rather yellowish, and was described by Baxendell as a yellowish star seen through a blue veil. From Mr. Roberts' photograph of the region about Nova, taken in 1890 , it would seem that six of the stars in D'Arrest's chart of 1864 had disappeared.

, !	-
$1: 5!$	-11
11 l	- 1! $1: 3$
11 l 11	+ is t!

 $\mathrm{p} .=65^{\circ}$.
β Scorpionis, 2 mag., with a companion 5 mag., at distance $13^{\prime \prime}$.
 distance $0.9^{\prime \prime}$. A 12 -inch refractor is necessary to distinguish this double -1.n1.
\& Draconis. A star of 35 mag., which, from investigations made at the Lick Observatory, is a spectroscopic double star, with a period of revolution of only 9 days.
$\Sigma 2007$, Herculis. A double star, 6.5 mag. and 8 mag.; distance 32", position angle 328°.
κ Herculis. A yellowish star, is mag., with a somewhat reddish companion, 6 mag., distance 31".
ν Scorpionis. An easily observed double star, 4 and 7 mags., distance $40.5^{\prime \prime}$; thus observed by both Herschel and South. Mitchell, however, at Cincinnati in 1846, found that the companion is itself double, and consists of two stars of 6% mag. at distance $1 \cdot 8^{\prime \prime}$. Lastly, Burnham in 1874 divided the primary also into two stars, but the distance is only $0 \cdot 8^{\prime \prime}$.
$11 i!+1: 3$
$1+i 11+i i+$ i

1+i $11-\cdots+1$
19 Serpentis. Primary 6.5 mag., companion 6.7 mag., distance $3^{\prime \prime}$.
σ Coronae, in mag., yellowish, with a blueish companion, 6 mag.,
 faint star, $\mathrm{d}_{.}=4^{\circ} 9^{\prime \prime}, \mathrm{p}_{0}=49^{\circ}$.
4173 (6093), Star Cluster in Scorpio. Discovered by Messier in 1781 and described as a circular nebula, 2 ' in diameter, with brilliant centre, like the muclens of a comet. Later on Hemithel, with the aid wf his antat

 if. 5 mag. in the cluster which had not been visille there before, and this
 already decreasing, and by the middle of June, 1860, was no longer visille. Near it are two rariahle stans $l i$ and S. The former, dismemend (hatonnar in 1853, is faint at maximum, being only 9 mag., and at minimum is almost under 13 mag. The change of brilliancy occupies 223 days. The latter (S) varies between 9 and 13 mag. Period only 177 days. Neither star is of any particular colour.
$111: \because+\because!1 \quad v$ Coronae. A star of 6 mag., with a companion of 9 mag., and three other very faint companions.

$1=271$

$1623+6155$
$1623+61+4$
$142.2+426$
$1626+\because 1: 3$
11i $\underset{-}{-}-1250$
$16: 3+538$
$1636+424$
$1636+4!1$
$1638+31+5$

4183 (6121), Nebula in Scorpio. A dense cluster of very small stars, almost on the parallel of Antares, and 112 degree to the west of it. Observed by Lacaille, and included in his list; Messier saw the cluster in 1764, and remarks that it is $2 \frac{1}{2}$ minutes in diameter, and looks like a patch of nebula in a telescope of low power. W. Herschel (in 1783) resolved, with a 10 -foot reflector, the whole into stars.
γ Herculis, 4 mag., with a companion 8 mag., distance $40^{\prime \prime}$, position angle 239°.
${ }_{\rho}$ Ophiuchi. A star of 5.5 mag., which is apparently to a slight degree variable, with a companion 7.5 mag., $\mathrm{d} .=4^{\prime \prime}, \mathrm{p} .=2^{\circ}$.
U Herculis. Recognised as variable by Hencke in 1860. At maximum it sometimes reaches 6.5 mag., at minimum it is under 11 mag. Period nearly 409 days.
a Scorpionis (Antares). A brilliant star, 1 mag., with a companion 7:5 mag., $\mathrm{d} .=4^{\prime \prime}, \mathrm{p} .=276^{\circ}$. The companion was discovered simultaneously at Rome and Cincinnati in 1849. Büg at Vienna, 13 April, 1819, when Antares was eclipsed by the moon, and when Antares should have come from behind the moon's dise, saw a star of 6.5 mag., which, 5 seconds later, seemed suddenly to attain the same brilliancy as Antares. He at once came to the conclusion that Antares was a double star. Its spectrum belongs to Group II.

99, Draconis, 5.5 mag., with a companion 7 mag , distance (1889) only $1^{\prime \prime}$.
η Draconis. A star of 2.5 mag., yellow, with a companion 9.5 mag., d. $=4 \cdot 8^{\prime \prime}, \mathrm{p} .=143^{\circ}$. Burnham has seen several other very minute stars in the vicinity.

30, g Herculis. Recognised as variable by Baxendell in 1857. The changes of brilliancy are very irregular. At maximum the star is 5 , and at minimum 6 mag.
λ Ophiuchi. A yellowish star of 4 mag., with a blueish companion 5.5 mag. The distance, which is increasing, was in $18911 \cdot 6^{\prime \prime}$, position angle 48°.

1211 (6171), Star Cluster in Ophiuchus. An extensive cluster of small stars. Discovered by W. Herschel on 12 May, 1793, and described as a very beautiful, rich, and dense cluster, 5^{\prime} to 6^{\prime} in diameter, in which the stars are collected with gradually increasing density towards the centre. Five brilliant stars are to be seen round the cluster.

16,17 , Draconis appears, to the naked eye, like a star of 4.5 mag . ; in reality it consists of two brilliant stars of 5 mag., at $\mathrm{d},=90^{\prime \prime}$. The one which follows is double, having a companion 6 mag , at $\mathrm{d} .=3 \cdot 7^{\prime \prime}, \mathrm{p} .=113^{\circ}$.
m Herculis appears, to the naked eye, like a star of 6 mag. In reality it is two stars of 6 mag., at distance $69^{\prime \prime}$. d. $=22^{\prime \prime}, \mathrm{p} .=92^{\circ}$.
ζ Herculis. A brilliant white star of 3 mag., with a companion 6.5 mag ; d. $=14^{\prime \prime}, \mathrm{p} .=64^{\circ}$ (1891). W. Herschel discovered the companion in July, 1782, but, later on, could no longer see it. It was next observed in 1826

1t. In.	

$11 i 4 i+31 i \quad i$
$11 i 1 i+15 i$

 to photo-spectroscopic measurements of Belopulsky, the motion of ζ in the

1230 (6205), Star Cluster in Hercules. A magnificent cluster visible
 who discovered it in 1714. Messier observed this object in 1764, and as:
 circular, brighter at the centre. Its diameter is estimated by Messier to be 6^{\prime}, and the same astronomer remarks that the nebula is situated near two stars of is mase of whith one is ahose, the wher lerneath it I t-inels refractor will resolve the nebula into stars, and Secchi, with his 9 -inch refractor, found the stars to be distributed over a space 8^{\prime} in diameter.
 able spiral grouping among them. The great 36 -inch refractor of the Lick Observatory has thoroughly resolved the central glow of nebulosity into
 photographs of this cluster in 1896.

4234 (6210), Nebula in Hercules. A blueish, planetary nebula, circular, 8^{\prime} in diameter, and ill-defined at the edges. Its spectrum shows the nebula to be composed of incandescent gas, being characterised by the three bright lines, of which the first is the most brilliant. Elsewhere the spectrum is dull and continuous. Webb describes the appearance of this nebula by saying that it looks like a star which has not been properly focussed in the telescope. From photo-spectroscopic measurements made by Kesler, this nebula is approaching the sun at a rate of 11.2 miles per second.

1238 (6218), Star Cluster in Ophiuchus. Discovered by Messier in 1769, and described as a faint, circular, starless nebula, 3^{\prime} in diameter, near which there is a star of 9 mag. In 1783 Herschel's reflector resolved the nebula into stars showing a cluster of 7^{\prime} to 8^{\prime} in diameter, at the centre of which the stars are very densely collected. Rosse makes it a spiral nebula.

19, Ophiuchi, 6 mag., with a companion 9 mag., $\mathrm{d} .=22^{\prime \prime}, \mathrm{p} .=93^{\circ}$.
ェ 2101, Herculis. A star of 6 mag., with a companion 9 mag., d. $=4^{\prime \prime}$, $\mathrm{p} .=60^{\circ}$.

1244 (6229), Nebula in Hercules. A large, round but faint, planetary nebula, discovered by W. Herschel 12 May, 1787. It forms a triangle with two stars of 6 mas.
≥ 2104, Herculis. A pretty double star, 6.5 and 8.5 mags., distance $6^{\prime \prime}$
S Herculis. Of a clear red colour and variable, discovered at Bonn in 1856. At maximum it is 6 mag., sometimes ouly 7 ruag.; at minimum it

4256 (6254), Star Cluster in Ophiuchus. Discovered by Messier,

 These stars are partially visible in a 4 -inch refractor.

	$\begin{aligned} & \text { inctination. } \\ & 19: 10) \end{aligned}$
11. m.	-
113 it	-124

Nova Ophiuchi, 1848. On 28 April of this year, Hind saw a star 4^{5} mag., of a yellowish-red colour in this place, where it had never before been visible. The star maintained this brilliancy till 10 May; it then began to decrease, and is now under 12 mag.

1261 (6266), Star Cluster in Scorpio. A beautiful nebula, discovered by Messier, 7 June, 1771, and described by him as like a comet. The nebula was resolved into stars by W. Herschel, with his 20 -foot telescope. It is beyond the reach of ordinary refractors.

4264 (6273), Star Cluster in Ophiuchus. Discovered by Messier, 5 June, 1764, catalogued by him as a starless nebula, situated on the parallel of Antares, 3^{\prime} in diameter, and of which a good view can be obtained with $3 \frac{1}{2}$-foot telescope. W. Herschel, in 1784, proved it to be a globular star cluster.
£ Ursae Minoris. A star of 4 mag., with a companion of 12 mag., at $\mathrm{d} .=78^{\prime \prime}, \mathrm{p} .=6^{\circ}$. From investigations made at the Lick Observatory, ε is itself a spectroscopic double, with a period of revolution of only a few weeks.
$11:$ is - 24 :i +268 (6286), Star Cluster in Ophiuchus. Discovered by W. Herschel, 2^{\prime} to $2 \frac{1^{\prime}}{}{ }^{\prime}$ in diameter, brilliant, and more condensed towards the centre; easily resolved. According to W. Herschel, the stars are of a faint red colour.

4269 (6287), Star Cluster in Ophiuchus. Discovered by W. Herschel, 21 May, 1784. It is globular, fairly brilliant, round, somewhat condensed towards the centre, and easily resolved.
R Ophiuchi. Reddish, and recognised as variable by Pogson in 1853. At maximum it is not more than 7 mag., at minimum it is under 12. Period 303 days.
μ Draconis, 45 mag., with a companion $5 \mathrm{mag}, \mathrm{d} .=244^{\prime \prime}, \mathrm{p} .=159^{\circ}$.
4270 (6293), Star Cluster in Ophiuchus. A globular cluster, fairly brilliant, large and round, with a sudden increase in brightness towards the centre ; can be resolved into stars. It is followed by a faint nebula.

36, Ophiuchi, 5.5 mag., and of a golden yellow, with a companion 6 mag., distance $4^{\prime \prime}$, position angle 197° (1888).
a Herculis. A variable star of a yellowish-red colour, 3 mag., recognised as such by Herschel in 1795. The changes in brilliancy are not very great, but very irregular. At minimum it is over 4 mag. It has a companion of 6 mag ., distance $4 \cdot 7^{\prime \prime}$. It has a beautiful spectrum of type III.
§ Herculis, 3 mag., of a greenish-white, with a blueish companion 8 mag., d. $=18^{\prime \prime}, \mathrm{p} .=183^{\circ}$. A beautiful object.
U Ophiuchi. A remarkable variable star, discovered by Sawyer in 1881. It is generally of 6 mag., and at minimum decreases to 6.7 mag. The period is only $20^{\mathrm{h}} 8^{\mathrm{mm}}$, and the change of brilliancy occupies the short space of 5 hours. The star belongs to the Algol type.

39, Ophiuchi, 6 mag., with a companion 7.5 mag., distance $15^{\prime \prime}$.
$1712-\ddot{4} 11$
$1713-182$
4287 (6333), Star Cluster in Ophiuchus. Discerned by Messier, and described as a faint, circular nebula 3^{\prime} in diameter. In 1784, Herschel resolved it into stars, with a 20 -foot reflector.

	$\begin{gathered} 11+1121+1 i+1 \\ 1364 . \end{gathered}$
17	＋1：

$1711+3312$
$1715-1 \ddot{ }$
$171 i-17$
1721
$1723+37$
$1723-\cdots+$
$172.5-21=$
$1730+3:$
$1730+1: 1$
$17: 3+\pi 15$
$1732-: 11$
$17 \because 2+21$
$173.3+7.74$
$17: 37+21: 3:$
$1725-115$
$1730+3:$

\＄294（6341），Star Cluster in Hercules．Described by Mi．．．．．．in ： starless nebula，with a milliant centre，easily discerned with a small telescope．A refractor of moderate power will resolve the nebula into
 not be resolved even in Rosse＇s telcscope．The whole slows a spiral arrangement．
 in colour．The period，according to Schmidt，who discovered it．i－int： irregular．
v ，Serpentis， 45 mag．There is a star of 9 mag ．at $\mathrm{d} .=51^{\prime \prime}, \mathrm{p} .=31$ ，
4296 （6356），Nebula in Ophiuchus．A brilliant nebula，di－．．．．．．．．．． by W．Herschel， 17 June，1784．It is of considerable size，brighter towards the centre，and can be resolved into numerous very small stars with a p＂川年ful telescon．
ρ Herculis．A greenish－white star， 4 mag．，with a companion（also somewhat green）， 5 mag．，distance $3 \cdot 6^{\prime \prime}$ ．

ェ 2166，Ophiuchi， 5.5 mag．，with a companion 7.5 mag ．distance $28^{\prime \prime}$ ， position angle 283° ．

4302 （6369），Nebula in Ophiuchus．Annular，faint，and small．
Noya in Uphiuchus，1604．At this point there appeared，in October， 1604 ，a star of 1 mag．，with a sparkling light，second to Venus only in
 then ranished entirels： in 1781．The companion is 7.5 mag．，and apparently does not change its position．Distance $41^{\prime \prime}$ ，position angle 191．
5t，Ophiuchi， 6 mag．，with a very faint companion 11.5 mag．， $\mathrm{d} .=214^{\prime \prime}$ ， $\mathrm{p} .=7 \mathrm{r}^{2}$.
v Draconis．Two stars of 4.5 mag．，visible to the naked eye as a star （1f + mas．Histithe fo゙．

4315 （6402），Star Cluster in Ophiuchus．A globular cluster， 7^{\prime} in diameter，easily seen as a circular nebula．Messier discovered it in 176it， and described it as a starless nebula，not large faint，standing near a small star of 9 mag．，easily seen with an ordinary $3 \frac{1}{2}$－foot telescope W．Herschel resolved the nebula into stars with his 20 －foot reflector．With a 4 －inch refractor，evidence of its resolvability is apparent．It is suroumled on

$\Sigma 2190$ ，Herculis， 6 mag．，with a companion $8: .5$ mag．， $\mathrm{d} .=10^{\prime \prime}$ ， $\mathrm{p}=23$ ．

4321 （6412），Nebula in Ursa Minor， 3^{\prime}＇in extent，brighter towards the centre．W．Herschel，who discorered it，took it to be a star cluster at an immeasurable distance．

83，Herculis， 6 mag．，with a companion $8: 5$ mag．，at clistance $10^{\prime \prime}$ ．The distance seems to be slowly increasing．

$\begin{gathered} \text { Right } \\ \text { Ascension. } \\ 5900, \end{gathered}$	Declination. 1900.	
$\begin{array}{ll} \mathrm{h} . & \mathrm{m} . \\ 17 & 40 \end{array}$	+ 2	131, Ophiuchi. A double star, 5.5 and 6 mag., $\mathrm{d} .=21^{\prime \prime}, \mathrm{p} .=94^{\circ}$. N_{1} change of position has been observed since Herschel's time.
1741	-27 48	X Sagittarii. Recognised as variable by J. Schmidt, in 1866 . The star varies between 4 and 6 mags., within a period of 7 days.
1742	+17 45	$\Sigma 2215$, Herculis, 6 mag., with a companion 8 mag., distance only $0.8^{\prime \prime}$, angle 296° (1886).
1743	$+274$	μ Herculis, 4 mag., and yellowish, with a companion 95 mag., $\mathrm{d} .=30^{\prime \prime}$, p. $=241^{\circ}$. In 1856 Clark discovered that the companion itself is double, consisting of two stars of 11 mag., which were then at distance $1 \cdot 8^{\prime \prime}$. This distance has since steadily decreased, and is, 1891 , only about $0.5^{\prime \prime}$. A very difficult object. Period 45.4 years.
1744	+ 212	ψ Draconis. A star of 4 mag., with a companion 5 mag., distance $31^{\prime \prime}$. Recognised as double by Flamsteed.
1748	$+23 \quad 6$	4343 (6482), Nebula in Hercules. Small, round, rather brighter towards the centre, with a small nucleus.
17.51	-19	4346 (6494), Star Cluster in Ophiuchus. A beautiful cluster, discovered by Messier, 20 June, 1764 . Its diameter is 15^{\prime}, and in this space there are nearly 80 stars of 9 to 12 mag. The stars seem to be scattered over the whole field of vision, the lowest magnifying power must therefore be used.
1754	+ $31: 31$	γ Draconis, 2.5 mag., with a faint companion 11 mag., d. $=125^{\prime \prime}$, $\mathrm{p} .=116^{\circ}$. Burnham saw, besides, an exceedingly faint star, 13 mag., $\mathrm{d} .=21^{\prime \prime}, \mathrm{p} .=152^{\circ}$; also a star 13.5 mag., $\mathrm{d} .=45^{\prime} 7^{\prime \prime}, \mathrm{p} .=230^{\circ}$; a star 13 mag., d. $=57^{\prime \prime}, \mathrm{p} .=16^{\circ}$; a star $11.5 \mathrm{mag} . \mathrm{d} .=97^{\prime \prime}, \mathrm{p} .=235^{\circ}$, and a star 11 mag., $\mathrm{d} .=139^{\prime \prime}, \mathrm{p} .=28^{\circ}$.
1756	+ 2	67, Ophiuchi. This star, 5 mag., has, at distance $55^{\prime \prime}$, a red companion 8 mag. The contrast of colour in these stars is pretty. Burnham discovered also three extremely feeble companions.
1756	-23 2	4355 (6514), Nebula in Sagittarius. A group containing several nebula. Erroneously described by Messier as a star cluster. In 1874, Herschel saw three nebulæe, with a double star in their midst. J. Herschel found this star to be triple. The star (or the nebulæ) seems to rapidly change its position.
1757	-302	4359 (6520), Star Cluster in Sagittarius. Globular, fairly brilliant, condensed towards the centre. The stars are exceedingly small.
17.5	$+2136$	95 , Herculis, 5 mag., somewhat greenish, with a companion 5.5 mag ., distance $6^{\prime \prime}$.
1758	-24 23	4361 (6523), Star Cluster in Sagittarius. A very beautiful object, discovered by Messier in 1764, and described by him as a star cluster. It really consists of several nebulæ, with a triple star and numerous others near to it.
17 \%	- 8 11	τ Ophiuchi, 5 mag., with a blueish companion 9 mag., $\mathrm{d} .=100^{\prime \prime}$, $\mathrm{p} .=127^{\circ}$. The primary, as discovered by W. Herschel, is itself a double star. Schiaparelli in 1882 found $\mathrm{d} .=1.9^{\prime \prime}, \mathrm{p} .=252^{\circ}$.
1759	- - :	4367 (6531), Star Cluster in Sagittarius. Discovered by Messier in 1764, and a beautiful object. The stars are of 8 mag. and under. Messier save they are mingled with nehula.

$\begin{gathered} \text { Mishlit } \\ \text { Ascension. } \\ \text { 1900. } \end{gathered}$	1)eclination. 1900.
$\begin{aligned} & 11 \\ & 1 \& \\ & 1: 3 \end{aligned}$	$-1:: \quad+!$
1: 14	- 17111
1815	-16 13
1818	-24
1819	-20 3.3
1822	+ 11
$18: 2$	+717
$182: 3$	+ 130
18 -	+ is 4.
1823	$+7 t \quad 31$
1823	+72 41
1826	-1912

4400 (6611), Star Cluster in Scutum Sobieski. A cluster of small stars discovered by Messier on 3 June, 176t. It is 8^{\prime} in diameter, and in the Finder looks like a faint nebula.

4401 (6613), Star Cluster in Sagittarius. Discovered by Messier at the same time as the cluster just mentioned, and described as less brilliant than it. Messier says that it looks like a nebula when seen with an ordinary $3 \frac{1}{2}$-foot telescope, while with a powerful instrument stars only are visible. Diameter 5'. Contains a double star 8.5 and 10.5 mags, distance $25^{\prime \prime}$.

4403 (6618), Nebula in Sagittarius. Something like a horseshoe in shape. Discovered by Messier, 3 June, 1764. He describes it as a luminous, starless streak, 5^{\prime} to 6^{\prime} in length, spindle-shaped, not unlike the nebula in Andromeda, but very faint. There are two stars near it, parallel with the equator, but visible only in a telescope. In clear weather a very good view of this nebula may be obtained with an ordinary $3 \frac{1}{2}$-foot telescope. W. Herschel was the first to get a perfect view of it. According to Holden, one arm of this nebula has changed its position. The spectroscope shows the nebula to be a mass of incandescent gas.

4406 (6626), Star Cluster in Sagittarius. A densely crowded cluster of very minute stars. Seen by Messier, 27 July, 1764, and described as a starless, circular nebula, not easy to distinguish with a $3 \frac{1}{2}$-foot telescope. Diameter 2^{\prime}. A powerful instrument is required to disintegrate it.

21, Sagittarii. A star of 5 mag., which has, at distance $2.5^{\prime \prime}$, a faint companion 8 mag., discovered by Alvan Clark.

59 d , Serpentis, 6 mag., yellowish, with a companion 7.5 mag ., $\mathrm{d} .=3 \cdot 9^{\prime \prime}$, $\mathrm{p} .=314^{2}$.
ϕ Draconis. A double star, very difficult to resolve, of 4.8 mag and 6.5 mags., discovered by O. Struve at Pulkowa in 1856. Burnham found in 188: the distance (1.\%".

4410 (6633), Star Cluster in Ophiuchus. Large, coarsely scattered; discovered by Caroline Herschel in 1783. This cluster has been measured by A. Nyland.
$39 b$, Draconis, 5 mag., with a companion 8 mag., $\mathrm{d}_{.}=3 \cdot 6^{\prime \prime}, \mathrm{p} .=358^{\circ}$. Also another 7 mag ., $\mathrm{d} .=90^{\prime \prime}, \mathrm{p} .=22^{\circ}$.
4415 (6643), Nebula in Draco. A remarkable nebula, fairly large and brilliant, preceded by two stars. According to Tuttle, it is variable in brilliancy. D'Arrest, in writing on this subject to J. Herschel, 8 May, 1863, says that Tuttle's nebula was so brilliant and remarkable in the Finder (2^{\prime} long and $80^{\prime \prime}$ broad) that he was convinced it had increased in brilliance since J. Herschel and his father observed it.
χ Draconis. A star of 4 mag., which, from photographs of its spectrum taken by Campbell at the Lick Observatory, turns out to be a spectroscopic double, with a period of 282 days.
U Sagittarii. A variable star, discovered by J. Schmidt in 1866. At maximum it is 7 mag., at minimum 8.5 mag. Period 6.7 days.

II 25, Star Cluster in Sagittarius. A cluster of small stars, dis-
 telescope. Burnham has measured several double stars in it.

424 (6656), Star Cluster in Sagittarius. Discovered by Abraham Ihle. 1665. Messier could not distinguish any star in it, cataloguel it
 surrounded by 5 irregularly placed stars. Herschel's 10 -foot telescope resolved the nebula into a star cluster. Towards the middle the stars are deuser ; diameter 8^{\prime}.

1426 ($666 \pm$), Star Cluster in Scutum Sobieski. Large, fairly rich, and of moderate density. Discovered by W. Herschel, 16 June, $178 t$.
a Lyrae (Vega). This splendid star, 1 mag., has near it several faint stars, but their connection with it is merely optical. One of them, which was used by Struve and Brünnow as a comparison star for calculating the parallax of Vega, is of 9.5 mag., $\mathrm{d} .=48^{\prime \prime}, \mathrm{p} .=156^{\circ}$; another of $9 \mathrm{mag} .$, $\mathrm{d} .=150^{\prime \prime}, \mathrm{p} .=40^{\circ}$. Winnecke and Burnham have also measured a very faint star (13 mag.), d. $=52^{\prime \prime}, \mathrm{p} .=292$. The spectrum of Vega belongs to the most beautiful of Class I. It shows the dark hydrogen lines with much intensity, and, in addition, some feeble lines of the metals. Several different values have been given to the parallax of Vega, but none of them is trustworthy, and the distance of this star consequently remains unknown.

4429 (6682), Star Cluster in Scutum Sobieski, Large and rich, but the stars are little more than minute luminous points.
$4432(6694)$, Star Cluster in Scutum Sobieski. Discovered by Messier, 2^{\prime} in diameter.

5, Aquilae, 6 mag., with a blueish companiou $7 \cdot t$ mag., distance $13 \cdots$ ". There is also a second companion 11 mag., $\mathrm{d} .=24^{\prime \prime}, \mathrm{p}=145^{\circ}$.

 according to Auwers, 1682 , is $208^{\prime \prime}$. The fact that each of these stars is itself double was verified by Christian Mayer, and in 1823 John Herschel
 of the two components from ε is, according to Dembowski, 1863, $3.045^{\prime \prime}$. The distance of both stars from 5 Lyrae was in the same year $2 \cdot 48^{\prime \prime}$, and
 seem to constitute a physical system of vast dimensions.
ζ Lyrae. A star of 4 mag., with a companion 55 mag. ; distance $4 t^{\prime \prime}$, rompanised by Flamsteed. Burnham discovered further three very feebly
 telescopes.

 T. E. Espin, also to vary considerably.

$\begin{gathered} \text { Right } \\ \text { Accusion. } \\ 1900 . \end{gathered}$	Declination. 1900.	
h. m	-	
1841	$+20$	29
1843	$+60$	-i;
184	- ii	$2: 3$
18 ti	+ $\because:$	1.1

110, Herculis, 5 mag., with a companion 11 mag., d. $=61^{\prime \prime}$, p. $=92^{\circ}$. Burnham saw a still fainter companion, $\mathrm{d}_{\mathrm{c}}=45^{\prime \prime}, \mathrm{p} .=96^{\circ}$.

ェ 2403, Draconis, 6 mag., with a companion 9 mag. According to Struve, in 1832, d. $=1^{\circ} 9^{\prime \prime}, \mathrm{p} .=259^{\circ}$.

4437 (6705), Star Cluster in Scutum Sobieski. Discovered by Kirch in 1681, and described later by Messier as a cluster of small stars only visible with a good instrument. The stars can be clearly seen with a $3 \frac{1}{2}$-inch refractor. Lamont and Helmext have taken the measurements of the whole cluster by trigonometry.
β Lyrae. This variable possesses five companions: B 6.7, C 13, D 14 , E 9.2 mags. The following positions have been determined (1895):-

$$
\begin{aligned}
& \text { A B, } \mathrm{d} .=45 \cdot 7^{\prime \prime}, \mathrm{p} .=149 \\
& \text { A } \mathrm{E}, \mathrm{~d} .=1 \mathrm{c} 7 \because_{2}^{\prime \prime}, \mathrm{p} \cdot=318 \\
& \text { A C, d. }=47 \cdot 1^{\prime \prime}, p .=248 \\
& \text { A } \mathrm{F}, \mathrm{~d}=\mathrm{St}=\mathrm{BH}^{\prime \prime}, \mathrm{p}=19 \\
& \text { A I }), \mathrm{d}=\left(\mathrm{i}+3^{\prime \prime}, \mathrm{p}=\mathrm{l}=\mathrm{is}\right.
\end{aligned}
$$

The principal has a range of variability between 3.4 mag. and 4.5 mag., its period being 12 days $21^{\mathrm{n}} 47^{\mathrm{mm}} 23^{\mathrm{s}}$. From minimum it reaches its first maximum of light in 3 days 2 hours; it then decreases in 3 days 7 hours by half a magnitude, returning in 3 days 3 hours to the intensity of its first maximum, and finally falls to its chief minimum in 3 days 9 hours. The spectrum of this star shows broad dark and bright hydrogen lines, as well as lines of magnesium and of the Cleveite gases. These lines are subject to periodical shifting, from which it is evident that β Lyrae is a very close double star, incapable of separation in any telescope, and that the variability is due to the mutual interpositions of β and its spectroscopic companions. The stars must be at least some 442 millions of miles asunder, and their masses are 27 times as great as that of our sun.

4440 (6709), Star Cluster in Aquila. A beautiful object, consisting of stars 9 to 12 mag. Vogel has measured 62 of them with the micrometer.

4441 (6712), Nebula in Scutum Sobieski. Brilliant, large, and nearly circular, more condensed towards the centre. According to Herschel, it is resolvable into stars.

4442 (6715), Nebula in Sagittarius. Discovered by Messier in 1778, and described as a faint nebula with a brilliant centre. According to Herschel, it is a globular star cluster consisting of very minute stars.
o Draconis, 4.5 mag., of a yellowish colour, with a companion of 7.6 mag., at d. $=31 \cdot 0^{\prime \prime}, \mathrm{p} .=341^{\circ}$ (1863).

4447 (6720), Nebula in Lyra. The beautiful and easily observed Ring nebula. Discovered by Darquier at Toulouse, 1779, between β and γ Lyrae. He describes it as very delicate, with well-defined boundaries, of about the same size as Jupiter, and looking like a planet that is about to become extinct. Messier describes it as a luminous cluster, apparently composed of small stars. It is, indeed, remarkable that this nebula, which appears like a disc with a bright border, has a brilliancy wherein one fancies one can see twinkling star-points. Rosse and Bond maintain that they have succeeded in resolving it into separate stars, but its spectrum is one of bright lines, which indicate that it is really composed of incandescent

Abstract

 reappeared as a star of 4 mag., but again vanished; was agrain seen in 1172.2 , and is now completely invisible. In 1852 Hind discovered a small w..n of 10.5 mag., which in 1861 had diminished to 12 mag ., and which he held to be identical with the star of 1670 . It seemed to him somewhat blurred as compared with other stars in its vicinity, and this impression a 1 shared by Talmage and Baxendell. ζ Sagittae. A greenish-white star, 56 mag., with a companion 9 It.i.... $\mathrm{d} .=8 \cdot 8^{\prime \prime}, \mathrm{p} .=309^{\circ}$. Clark, in 1875, with a 12 -inch refractor, found the primary to be itself double. A very difficult object. Burnham's measurements are $\mathrm{d} .=0 \cdot 1^{\prime \prime}, \mathrm{p} .=183^{\circ}(1891)$. Period $18 \cdot 7$ years.

 (Vogel's Class Ia.). The hydrogen lines appear much broadened and frayed at the edges, which Vogel ascribes to special temperature and pressure
 spectroscopic researches and measurements, this star is approaching the sun
 $\mathrm{d} .=152^{\prime \prime}, \mathrm{p} .=322^{\circ}$. There are several fainter stars nearer to the primary.

χ Cygni. A variable star of long period, with irregular variations in brightness. Its variability was discovered by Kirch in 1686. At maximum
 is almut toli days.

Aquilae. Recognised as variable by Pigott in $178 \pm$. At maximum
 slowly increasing.

1517 (6832), Star Cluster in Cygnus. A fairly large but not very dense cluster, containing stars of 7 mag.
 nebula. Herschel resolved it into a dense cluster of stars, 3^{\prime} in diamretor. I lxamtiful niment.
\& Draconis, 4.5 mag., with a companion 7.6 mag., $\mathrm{d} .=28^{\prime \prime}, \mathrm{p} .=30^{\circ}$.
β Aquilae. A star of 4 mag., pale red in colour, with several faint stars near to it. Bumban sives the following meathrement-fiot iwn of them (1880) : -

$$
\mathrm{A} \mathrm{~B}, \mathrm{~d}=11^{\circ} 7^{\prime \prime}, \mathrm{p}=15^{\circ} 7^{\circ} \quad \text { A C }, \mathrm{d} .=151 \cdot 7^{\prime \prime}, \mathrm{p} .=3 \frac{1}{4 \cdot 2^{\circ}}
$$

B, according to Engelmann, is 11.4 mag. C is more brilliant.
57, Aquilae, 5 mag., with a companion 6 mag, distance $36^{\prime \prime}$. Struve calls both stars white, but at present one star seems to be yellowish, the wher -iver a crmonish ligh.

$$
\begin{aligned}
& 111.1 .=1: 10 \cdot 10=1 \therefore \\
& 1(1.1)=11 i^{\prime \prime} \cdot 1 \cdot=\because 21 \\
& 1 \mathrm{~B} 1 .=1.1 \%^{\circ} \cdot 1=217
\end{aligned}
$$

1:18	$+17$
$1!$ -	$+24$
19 59	$+t!$
$\because 11$	-22
$20 \quad 1$	$+43$

$\because 11+23$
$27+034$
$2118+2 \pi 11$
$2011-349$
$\because 1110+46 \quad 26$
$211 \ddot{2}-1 \ddot{2}$
ψ Cygni. A white star of 5 mag., with a companion $7 \cdot 5$ mag., $\mathrm{d} .=3 \cdot 3^{\prime \prime}$, $\mathrm{p} .=185^{\circ}$ (1831).

4532 (6853), Nebula in Vulpecula. Rosse's "Dumb-bell Nebula." First discovered in 1764, and described by Messier as an oval, starless nebula. A 4 -inch refractor shows two contiguous nebulæ of moderate brilliancy, surrounded by some stars. The great telescopes of the two Herschels showed no more than this. The best drawing seems to be that of Secchi, who recognised the existence of a multitude of stars between the two nebulæ. According to Huggins these latter give a spectrum of bright lines, and are therefore really masses of incandescent gas. Roberts' photograph in 1888, taken in an exposure of three hours, indicates the completeness of the oval bright border of the disc.

13 , Sagittae, 6 mag., with a companion 7.5 mag., $\mathrm{d}_{.}=340^{\prime \prime}, \mathrm{p} .=13^{\circ}$.
16, Yulpeculae. Two stars of 6 mag., at distance of only $0.6^{\prime \prime}$ from one another. They can be resolved in none but the largest telescopes.
ε Cygni, 4 mag., of a yellowish colour, with a companion of 8 mag., $\mathrm{d} .=42^{\prime \prime}, \mathrm{p} .=146^{\circ}$; also a second companion of 11 mag., $\mathrm{d} .=9^{\prime \prime}, \mathrm{p} .=74^{\circ}$. The latter was discovered by Burnham.

4543 (6864), Nebula in Sagittarius. Discovered by Méchain in 1780 as a starless nebula. But even Messier recognised stars in it, and W. Herschel resolved the whole into a star cluster.

4544 (6866), Star Cluster in Cygnus. Large, 15 ' in diameter, very rich in stars of considerable brillianey and very dense. Discovered by W. Herschel, 11 September, 1789.
$\Sigma 2628$, Aquilae. Yellowish, 6 mag., with a reddish companion 8 mag., $\mathrm{d} .=4 \cdot 5^{\prime \prime}, \mathrm{p} .=349^{\circ}$. No motion has been observed in the companion since the time of Struve.
θ Sagittae, 6 mag., with a companion 8 mag., $\mathrm{d} .=11 \cdot 4^{\prime \prime}, \mathrm{p} .=326^{\circ}$; and a second companion 7.5 mag., $\mathrm{d} .=70.5^{\prime \prime}$, $\mathrm{p} .=227^{\circ}$.
$\Sigma 2644$, Aquilae. A double star, 6 and 7 mags., $\mathrm{d} .=3 \cdot 6^{\prime \prime}, \mathrm{p} .=208^{\circ}$ (1880). The primary is of a blueish-white colour.

4559 (6885), Star Cluster in Yulpecula. A not very dense cluster of moderate brilliancy, fairly rich in stars, some of 6 to 13 mag. Schultz at Upsala has obtained accurate measurements of this cluster.
$\Sigma 2654$, Aquilae. A star of 65 mag., with a companion 8 mag., d. $=14^{\prime \prime}, \mathrm{p} .=234^{\circ}$.
0^{2}, Cygni. A star of 4 mag., with a companion 5.5 mag., $\mathrm{d} .=338^{\prime \prime}$, $\mathrm{p} .=324^{\circ}$; a second companion 6.5 mag., $\mathrm{d} .=107^{\prime \prime}, \mathrm{p} .=174^{\circ}$; a third companion 11.5 mag., $\mathrm{d} .=20^{\prime \prime}, \mathrm{p} .=333^{\circ}$.
a^{1}, a^{2}, Capricorni. Two stars, 3 and 4 mag., both yellowish, distance $376^{\prime \prime}$. Each of them is itself double ; a^{2} has a companion 10.5 mag., $\mathrm{d} .=7 \cdot 4^{\prime \prime}$, $\mathrm{p} .=150^{\circ}$. This companion again was found to be also double by Clark in 1862 , and consists of two stars of 11 mag., distance only $1 \cdot 2^{\prime \prime}$. They can be divided by the very largest telescopes only. There is a third star (9 mag .), $\mathrm{d} .=154^{\prime \prime}, \mathrm{p} .=156^{\circ}$. The star a^{1} has near it a star of $9.5 \mathrm{mag} .$, $\mathrm{d} .=44 \cdot 3^{\prime \prime}, \mathrm{p} .=221^{\circ}$. Burnham found also a small star of 13 mag., $\mathrm{d} .=43^{\prime \prime}$, p. $=182^{\circ}$, but this was only visible in the 26 -inch refractor at Washington.

	$\begin{aligned} & \text { Feclination. } \\ & 1900 . \end{aligned}$
. 11.	\bigcirc
$\because 11 \quad 30$	+27 58

$\because 3+3113$
$2033+1415$
$20: 4+118$
β Delphini. A greenish star of 3 mag., with a faint companion 11 mag., d. $=37^{\prime \prime}, \mathrm{p} .=331^{\circ}$. There is a second exceedingly faint (13 mag .) companion, $d^{2}=25 \cdot 9^{\prime \prime}, \mathrm{p} .=118^{\circ}$. Finally, Burnham found the primary to be itself double, consisting of two stars at a distance of only $0 \cdot 7^{\prime \prime}$, of which the period of revolution has been calculated as 26.7 years.

1, Aquarii. A star of 5.5 mag ., with two very faint companions (11 mag.$)$, whose positions Burnham observed in 1879 as follows : $\mathrm{d} .=55^{\circ} 8^{\prime \prime}$, $\mathrm{p} .=217 \cdot 4^{\circ}$; $\mathrm{d} .=72.9^{\prime \prime}, \mathrm{p} .=38 \cdot 9^{\circ}$.
a Delphini, 4 mag., with a companion 9.5 mag., $\mathrm{d} .=35^{\prime \prime}, \mathrm{p} .=278$. There are, in addition, three exceedingly faint stars near the primary, $d .=20^{\prime \prime}$, p. $=225^{\circ} ; \mathrm{d} .=45^{\prime \prime}, \mathrm{p} .=350^{\circ} ; \mathrm{d} .=81^{\prime \prime}, \mathrm{p} .=114^{\circ}$. Auwers in 1858 found, from numerous comparisons, that a fluctuates in brilliancy to the extent of about half a magnitude within a period of about 14 days. Since the date named this change of brilliancy does not seem to have been again noticed.

49, Cygni, 6 mag., and yellowish, with a blueish companion 8 mag., distance $27^{\prime \prime}$. In both stars the colours are easily recognisable.
T Delphini. Variable, discovered by Baxendell in 1860. At maximum it does not exceed 8 , and often scarcely 9 mag., at minimum it is 13 mag . Period 332 days.

4600 (6960), Nebula in Cygnus. A remarkable, irregular nebula, fairly bright and large. It extends beyond 52 Cygni. Discovered by Herschel 7 September, 1784 ; as seen by him it extended over more than 1°; indeed, with the highest magnifying power, almost 2°. The spectrum, according to Huggins, is a continuous one.
$20+2+1 i+4 i$
$\because 11+\because \because 21$
$\because 114+6124$

$$
\because 11+\because+340
$$

$2044+\therefore i k$

4591 (6940), Star Cluster in Vulpecula. Discovered by W. Herschel, brilliant, fairly large and rich, containing many brilliant stars densely massed together.

A Star in Cygnus of 6 mag., with a companion of the same mag., at $\mathrm{d} .=178^{\prime \prime}, \mathrm{p} .=175^{\circ}$. I

$\underset{\substack{\text { Ascensioion } \\ \text { 19000 }}}{\text { Licht }}$	Declination.	
	- 110	4, Aquarii ($\Sigma 2729$). A very difficult double star. The primary is 6 mag, and somewhat yellowish, the companion 8 mag. According to Hall (1887), the distance is only $05^{\prime \prime}$, position angle 176°.
21) 48	- 12 -	4608 (6981), Star Cluster in Capricornus. Discovered by Méchain as a faint nebula. Messier, too, observed it, and remarked a small telescopic star close to it. Herschel, in 1783, resolved the nebula into stars, and the 40 -foot reflector, 4 October, 1810 , with a magnifying power of 280 , showed separate stars even in the centre of the cluster. It is nearly 2^{\prime} in diameter. Several other stars appeared in the field of vision, but they were, as Herschel remarked, quite distinct from the minute points of light to be found in the cluster itself.
2051	+ $+!$	$\Sigma 2735$, Equulei. A star 6 mag., with a companion $8 \mathrm{mag}, \mathrm{d} .=2^{\prime \prime}$, p. $=290^{\circ}$.
20.7	+ 3505	1, ε Equulei. A yellowish star of 5 mag., with a blueish companion 7 mag., distance $10 \cdot 8^{\prime \prime}$. The primary, as discovered by Struve, is a narrow double star of 5.7 and 6 mags., distance, according to Engelmann (1884), 1.26".
211	$+1.548$	4625 (7006), Nebula in Delphinus Fairly brilliant, not large, round, brighter at the centre.
20.36	+ 478	59, Cygni, 5 mag., with a companion 9 mag ., $\mathrm{d} .=20^{\prime \prime}, \mathrm{p} .=352^{\circ}$.
20	+ 1; 47	2, Equulei. Two stars of 6 mag., distance $26^{\prime \prime}$. No perceptible change has been observed in their relative positions during the last fifty years.
-70	$+47$	59, f^{1} Cygni. A star of 5 mag., greenish-white, with a companion 9 mag., $\mathrm{d} .=20^{\prime \prime}, \mathrm{p} .=352^{\circ}$; there is also a second companion 10.5 mag., $\mathrm{d} .=26^{\circ} 7^{\prime \prime}$, p. $=141^{\circ}$.
$\underline{210}$	+ 1	$\mathbf{\Sigma} 2744$, Equulei. A star of 6 mag., with a companion 7 mag., distance $1.5^{\prime \prime}$.
2059	- 11	4628 (7009), Nebula in Āquarius. A beautiful, planetary nebula, discovered by W. Herschel, 7 September, 1782. The disc appears to be somewhat blurred at the edges in a telescope of medium strength. Lassell saw a bright ring within the nebula, and Rosse calls it "Saturn nebula." The spectrum, according to Huggins, shows it to be of a gaseous nature. Vogel also finds the three bright lines in it. According to measurements made by Keeler, this nebula is moving towards the sun at the rate of 17.2 miles per second.
2059	- if 13	12, Aquarii, 6 mag., with a companion 8 mag., d. $=3^{\prime \prime}$, p. $=190^{\circ}$.
210	+ 23	R Vulpeculae. A variable star, which at maximum seldom reaches $7 \cdot 5$ mag., and at minimum disappears even in the most powerful telescopes. Period nearly 137 days. Discovered at Bonn in 1858.
$\because 11$	+ 3818	61, Cygni, 5 mag., with a companion 6 mag., both golden yellow in colour, but of slightly different tints. The distance is $21^{\prime \prime}$, and the change of position is rapid; it has not yet been possible, however, to calculate the period of revolution. This was the first star of which Bessel (1838) was ahle to measure the parallax, and to deduce therefrom its distance from the earth. The measurements have been repeated later by several observers, but without establishing a satisfactory correspondence with each other or with Bessel. From photographs taken by Professor Wilsing, at Potsdam, it was at length seen that the cause of these differences arose from the fact

$\begin{gathered} \text { Right } \\ \text { Are 11sion. } \\ \text { 19yOH } \end{gathered}$	Declination. $19 \% 1$.
:1 $\quad 1$.	,
$\because 1 \quad:$	+41 - 11
21	+ 944
21 S	$+4.516$
218	+68 i
21 !	+ i! : 34
$\because 110$	+ 930

$2111+37 \quad 36$
$\because 114+3425$
$2117+5812$
$\because 118+1!9 \because 3$
$\because 1 \because+11+t$
that the principal of 61 Cygni has a slight periodical motion, probably around a darker companion. Keeping this circumstance in view, the probable parallax has been fixed at $0.36^{\prime \prime}$, corresponding to a distance from the earth of 550,000 radii of the earth's orhit.
(7027), Nebula in Cygnus. Recognised by Webb, 14 November, 1879, as a star of 8.5 mag., surrounded by nebula. Schmidt describes the nebula as elongated in shape, being $8^{\prime \prime}$ to $10^{\prime \prime}$ in length, condensed towards the centre, which seems of a stellar nature. Vogel finds the spectrum to contain the three bright lines very clearly marked, the rest of the spectrum being faint and continuous. From measurements made by Keeler, this nebula is receding from us at the rate of 16.8 miles per second.
γ Equulei, 4.5 mag., yellow, with a companion 6 mag., distance 366". The primary is itself double, having a small star 10 mag. at $\mathrm{d} .=2 \cdot 1^{\prime \prime}$, $\mathrm{p} .=277^{\circ}$. Burnham also saw a very faint star, $\mathrm{d} .=44^{\prime \prime}, \mathrm{p} .=79^{\circ}$.

4645 (7039), Star Cluster in Cygnus. An extensive but not very rich cluster of stars of 10 mag. A star of 7 mag. follows it on its edge.
T Cephei. Recognised as variable by Ceraski in 1879. At maximum the star is 5.5 , at minimum 9 mag. Period 383 days.
$\Sigma 2780$, Cephei. The primary is 6 , the companion 7 mag., and both are white. Wilson (1873): $\mathrm{d} .=1.0^{\prime \prime}, \mathrm{p} .=229^{\circ}$. No change of position has been observed since the time of Struve.
δ Equulei, 4.5 mag., and yellowish, with a companion 10 mag . In 1852 Otto Struve found that the primary is itself double, having a companion 10.5 mag. near to it. Burnham (1881):-

$$
\begin{aligned}
& \text { A B, d. }=0.35^{\prime \prime}, \mathrm{p} .=29 \cdot 0^{\circ} \\
& \text { A C, d. }=22 \cdot 7^{\prime \prime}, \text { p. }=37 \cdot 9^{\circ}
\end{aligned}
$$

The primary can only be divided with a most powerful instrument. The period of the two is 11.5 years.
τ Cygni, 45 mag. ; a difficult double star, discovered by Clark in 1874. According to Burnham, the companion is at $\mathrm{d} .=1^{\prime \prime}$. Period 36.5 years. Holden saw another very faint companion, $\mathrm{d} .=16^{\prime \prime}$, $\mathrm{p} .=260^{\circ}$.
v Cygni, A star of 4.5 mag., with two faint companions of 10 mag., $\mathrm{d} .=15^{\prime \prime}, \mathrm{p} .=219^{\circ}$; and d. $=215^{\prime \prime}, \mathrm{p} .=178^{\circ}$.
$\Sigma 2790$, Cephei, 5.6 mag., and red, with a companion 10 mag., $\mathrm{d} .=4 \cdot 5^{\prime \prime}$, $\mathrm{p} .=46.5^{\circ}$.

1 Pegasi. A yellow star, 4.5 mag., with a companion 8.6 mag., $d .=37^{\prime \prime}$, $\mathrm{p} .=301^{\circ}$. There is no change of position since 1780. The principal itself, according to Campbell (1899), is a spectroscopic double, with a period of revolution of about 10 days.
β Equulei, 5 mag., with a companion 10.5 mag., $\mathrm{d}_{.}=674^{\prime \prime}, \mathrm{p} .=309^{\circ}$, and, in addition, a second companion 11 mag., $d .=86^{\prime \prime}, p .=276^{\circ}$. The first companion is itself a double star of 10.5 and 11 mags., $\mathrm{d} .=6.5^{\prime \prime} \mathrm{p} .=10^{\circ}$. Burnham also found a very faint star, $\mathrm{d} .=32^{\prime \prime}, \mathrm{p} .=260^{\circ}$. This latter is visible in a very powerful telescope only.

4670 (7078), Star Cluster in Pegasus. Recognised as a nebula by Maraldi as far back as 1745 . Herschel resolved it into a globular cluster

$\begin{gathered} \text { Hight } \\ \text { A scepsion. } \\ 1900 . \end{gathered}$	$\begin{aligned} & \text { 1) clinat ion. } \\ & 1900 . \end{aligned}$
h. m.	\bigcirc
$\because 1411$	+ $\quad 11$

μ Cephei, Of a deep red colour, and varies between 4 and 5 mag.; period not yet ascertained. It is of a fine deep garnet colour (W. Herschel). The star is a variable, with a range between 4 and 5 mag. Its spectrum, according to D'Arrest, is that of the most beautiful of Type III. The star has two companions, but they are both very faint.

4709 (7142), Star Cluster in Cepheus. Fairly large, rich in stars, densely massed together. In large telescopes a very beautiful object.
$\Sigma 2840$, Cephei. A star of 6 mag., somewhat greenish in colour, with a companion 7 mag., d. $=20^{\prime \prime}$, p. $=195^{\circ}$.

20, Pegasi, 6 mag. As discovered by Burnham, this star has an exceedingly faint companion of 13 mag., $\mathrm{d} .=51^{\prime \prime}, \mathrm{p} .=326^{\circ}$.
ξ Cephei. Primary yellowish, 4.5 mag., companion blueish, 6.5 mag . Struve, in 1831: d. $=5 \cdot 6^{\prime \prime}, \mathrm{p} .=289^{\circ}$.

4755 (7209), Star Cluster in Lacerta. Large, fairly rich. Some of the stars are from 8 to 10 mag.
$\Sigma 2872$, Cephei. Primary 6 mag., companion 6.5 mag., d. $=21 \cdot 7^{\prime \prime}$, $\mathrm{p} .=316.4^{\circ}$. The companion is itself double, consisting of two stars of 7 mag., distance only $0^{\prime} 6^{\prime \prime}$.
41, Aquarii, 5.6 mag., and yellowish, with a companion 8.9 mag., d. $=5^{\prime \prime}, \mathrm{p} .=116^{\circ}$.
$\Sigma 2883$, Cephei, 6 mag., with a blueish companion 8.2 mag., $\mathrm{d} .=15^{\prime \prime}$, $\mathrm{p} .=255^{\circ}$.
4773 (7243), Star Cluster in Lacerta. Coarsely scattered, with a good many fairly brilliant stars; diameter 16^{\prime}. In it is to be seen the double star $\mathbf{\Sigma} 2890$.
$\mathbf{\Sigma} 2893$, Cephei. Yellowish, 5.5 mag . There is a star 7.5 mag ., d. $=29^{\prime \prime}, \mathrm{p} .=349^{\circ}$.

33, Pegasi. Triple. The primary (A) 6 ; the nearer companion (B) 9 ; the farther (C) $7 \cdot 5$ mag. Dembowski gives the following measurements, 1863 :-

$$
\begin{aligned}
& \text { A B }, \mathrm{d}=2 \cdot 3^{\prime \prime}, \mathrm{p} .=178^{\circ} \\
& \text { A C, d. }=60.5^{\prime \prime}, \mathrm{p} .=334^{\circ}
\end{aligned}
$$

ζ Aquarii ($\mathbf{\Sigma} 2909$). Even Chr. Mayer knew this star to be double, and the fact is easily verified. The primary is 4 , the companion 4.1 mag., $\mathrm{d} .=3 \cdot 5^{\prime \prime}$, and both are a greenish-white colour. Since Herschel's time, the distance has decreased, the position angle has also changed considerably.

37, Pegasi. A star of 6 mag., with a companion 7 mag. When discovered by Struve (in 1831) the distance was $12^{\prime \prime}$, but it has since considerably decreased, and Burnham, in 1891, found it impossible to divide the star.
$2225+\pi 75$
δ Cephei. Yellowish-red in colour, and variable; it is the primary of a double-star system. At maximum it is nearly 4 mag., at minimum

	Decelination. 19, and.	
1. m.	${ }^{\circ}$	almost 5 mag. Period $5 \frac{1}{3}$ days: the changes of brilliancy succeed one another quite regularly. Discovered by Goodricke.
2231	$+39$	8, Lacertae. Quadruple, $\mathrm{A}=6, \mathrm{~B}=6 \%,(\mathrm{C}=11 \mathrm{n}, \mathrm{I})=87 \mathrm{mar}$. Burnham's observations are- A B, d. $=22 \cdot 3^{\prime \prime}, \mathrm{p}_{0}=186^{\circ}$ B C, d. $=27.9^{\prime \prime}, \mathrm{p} .=155^{\circ}$ A D, d. $=81 \cdot 5^{\prime \prime}, \mathrm{p} .=148^{\circ}$ B D, d. $=66.5^{\prime \prime}, \mathrm{p} .=\mathbf{1} 36^{\circ}$
2233	+ 335	4815 (7331), Nebula in Pegasus. Fairly bright and large, with a sudden increase of brilliancy towards the centre. Spectrum continuous.
2: : 3	$+2942$	η Pegasi, 35 mag., with a companion 10 mag., observed by Herschel and South, $\mathrm{d}_{\mathrm{L}}=91^{\prime \prime}, \mathrm{p} .=339^{\circ}$. Burnham discovered that the companion is itself double ; $\mathrm{d} .=0.4^{\prime \prime}, \mathrm{p}=90^{\circ}$. Period 2.25 years (?).
$2 \because 4$	-1435	69, Aquarii ($\Sigma 2943$). A star of 6 mag., with a companion 9 mag. $\mathrm{d} .=28^{\prime \prime}, \mathrm{p} .=115^{\circ}$.
294	$+1140$	ξ Pegasi, 4.5 mag., with a companion 11 mag. (observed by J. Herschel), d. $=12^{\prime \prime}, \mathrm{p} .=118^{\circ}$. Burnham also saw a star of 11 mag., $\mathrm{d} .=12^{\prime \prime}, \mathrm{p} .=113^{\circ}$.
2244	- 1 ± 7	τ Aquarii, 4 mag., and red, with a companion 9.5 mag., distance $133^{\prime \prime}$.
2251	- $\because 10$	S Aquarii. A star of a deep reddish-yellow colour, recognised as variable by Argelander in 1853. At maximum it is only 8 mag., at minimum 12 mag. Period 280 days.
2259	$+2732$	β Pegasi. The primary is variable; at maximum it is $2 \cdot 2$, at minimum $2 \cdot 7$ mag. The changes of brilliancy are somewhat irregular, and are accompanied by a change in the reddish tint of the star. The companion, which was observed by J. Herschel, is faint; and in 1878 the measurements were $\mathrm{d} .=99^{\prime \prime}, \mathrm{p} .=208^{\circ}$. It shows a beautiful spectrum of Class III. (with dark bands).
235	+74 51	π Cephei. Observed by J. Herschel as a double star, but found to be triple by the refractor at Pulkowa, the primary being itself double. The central star is 5 mag. The farther companion 10 mag. The nearer companion is, according to Struve, 8.9 mag., distance $1.5^{\prime \prime}$.
2311	- ! 3 \%	ψ Aquarii. An easily observed double star, recognised as such even by Chr. Mayer. According to Struve, the primary is 4.5 mag., and of a deep yellow colour. The companion is 8.5 mag., and blue. Distance $49 \cdot 6^{\prime \prime}$. Burnham discovered that the companion is also a double, its fellow being of 9.6 mag ., at $\mathrm{d} .=0.22^{\prime \prime}$.
2314	-14	94, Aquarii (Σ 2998). Recognised as a double star by W. Herschel, 20 August, 1781. The primary is 6 mag. and yellowish-white, the companion 7 mag., and blue. The companion's change of position is slight, but the mutual motions of the stars show a physical relation between them.
2315	+67 34	- Cephei. The primary (deep yellow) is 5.5 mag., the companion (deep blue) 7.8 mag. The position of the companion seems to change. 1885 , d. $=28^{\prime \prime}, \mathrm{p} .=195^{\circ}$.
2316	+ 822	S Pegasi. A variable star, of a yellowish-red colour. At maximum it is occasionally 7 mag., but faint; at minimum it is only 13 mag. Period 318 days.

$\begin{gathered} \text { Right } \\ \text { Rinititun. } \\ \text { 1990. } \end{gathered}$	$\begin{gathered} \text { [1-a litration. } \\ \text { 1.vu. } \end{gathered}$
$\begin{aligned} & l_{2}^{\mathrm{l}}: \\ & 20 \end{aligned}$	$+61 \quad \because$

$\because \because \because 1+11 \quad 3!$
$\because \because \because 3+4 n \quad \therefore$
$2339-15.51$
$2341-19 \quad 14$
$2: 3+15+2$
$\because 3+56111$
$23.33+50.50$
$2354+312$
$2354+339$

4957 (7654), Star Cluster in Cepheus. Discovered by Messier 7 September, 1774, and described as follows: "A cluster of very small stars mingled with nebula. Can only be seen with an achromatic telescope." The cluster is preceded by two stars of 7 and 8 mags., and followed by one brilliant star. It contains one star of an orange colour.

4964 (7662), Nebula in Andromeda. A small, brilliant, planetary nebula; $15^{\prime \prime}$ in diameter, discovered by W. Herschel, 6 October, 1784. Lassell recognised in it a nucleus with two oval rings, Rosse a spiral arrangement. The spiral form of this nebula has been confirmed by the photographs taken by Deslandres. The spectrum contains four bright lines indicating a gaseous nature.
λ Andromedae. A star of 4 mag., which, according to investigations made by Campbell at the Lick Observatory, is a spectroscopic double with a revolution period of $19 \cdot 2$ days.
R Aquarii. A star of a somewhat deep red colour, recognised as variable by Harding in 1811. It varies from 6 to 11 mag. Period apparently somewhat under 387 days.

107, Aquarii, 5.6 mag., with a blueish-white companion 7 mag., $\mathrm{d} .=5 \cdot 6^{\prime \prime}, \mathrm{p} .=138^{\circ}$.

5023 (7742), Star Cluster in Pegasus. A cluster of coarsely scattered stars of 10 mag . and upwards.

5031 (7789), Star Cluster in Cassiopeia. Discovered by Caroline Herschel in 1783, between ρ and σ Cassiopeia. The stars are numerous but not brilliant, and the whole object is a beautiful sight in a powerful telescope.
R Cassiopeiae, Recognised as variable by Pogson in 1853, of a deep red colour. At maximum it is 5, at minimum $10 \cdot 12$ mag. The period is about 429 days.
a Cassiopeiae. Discovered to be double by W. Herschel, 31 August, 1780. The primary is 5.4 mag., and greenish, the companion $7 \cdot 5$, and deep blue in colour. The colours in both are very intense. The position of the companion does not seem to alter; d. $=3^{\prime \prime}, \mathrm{p} .=324^{\circ}$.
£ 3050, Andromedae. Two stars 6 mag., distance $3^{\prime \prime}$.
85, Pegasi. This is a quadruple star, and one of the most interesting quadruples in the heavens. $\mathrm{A}=6, \mathrm{~B}=11, \mathrm{C}=9, \mathrm{D}=13$ mags. Aitken furnishes (1899) the following measurements:-

$$
\begin{aligned}
& \text { A B , d. }=0 \cdot 8^{\prime \prime}, \mathrm{p} .=226^{\circ} \\
& \text { A C, d. }=32 \cdot 9^{\prime \prime}, \mathrm{p}=344^{\circ} \\
& \text { A D, d. }=83 \cdot 9^{\prime \prime}, \mathrm{p} .=288^{\circ}
\end{aligned}
$$

According to Burnham, the period of B is $25 \cdot 7$ years. The companions can be seen only in the great telescopes, the closest one only in a refractor of the first rank.

Right Ascension $=3^{\text {h }}$ Declination $=+58^{\circ}$

Right Ascension $=13^{\mathrm{h}}$. Declination $=+58^{\circ}$

$5^{\text {min }}$

$+5^{m} \quad * 6^{m}+6.3^{m} \quad$ vaus. \quad nebula or cluster

Right Ascension $=2 \because{ }^{4} \cdot$ Declination $=+58^{\circ}$

3072 1 4^{h}			

$5!$

Right Ascension $=22^{\text {h }}$. Declination $=-3^{\circ}$

Right Ascension $=6^{\mathrm{h}}$. Declination $=-3^{\circ}$

Right Ascension $=10^{\text {h }}$. Declination $=-3^{\circ}$

5^{m}

im

Right Ascension 17 $^{\text {h }}$. Declination $=-3^{\circ}$

Reproduction of a photograph ta:

10	31	12	13	14	15	13
0	0	0	0	.	0	10

rer of the Pleiades.
aht by the Brothers Hexry, Paris.

The Great Nebulalin

Nebula G. C. 4355 after Trouveiot.

Star Cluster 6.C. 4294 after Trouvelot.

Star Cluster G.C. 4440 after Vogel.

Star Cluster G.C. 1361 after Vogel.

Rt. Asc. $19^{\mathrm{h}} 55^{\mathrm{m}}$ Decl. $+37^{\circ} 45^{\prime}$
l'art of the constellation of the Swan (Cygnus)
Heliographical reproduction from a photograph by the Brothers Henry of Paris, without modification.

ng Nebula in the Lyre (Lyra)
after Holden.
G. C. 4447 .

Spiral Nepula
In lib Founds (Canes Venatici) after Rosse.
G. C. 3572 .

The Omega Nebula after Holden and Trouvelot.
G. C. 4403.

Crab Nebula in the Bull (Taurus)
after Rosse.
G. C. 1157.

Nebula G.C. 1227 after Tempel.

Nebula G.C 1511 after Tempel.

Nebula G.C. 4773 and its surroundings

- Nova 1572 The New Star in Cassiopeia and its surroundings. after D'Arrest.

The Nebuix G. C. $3105,3108,3109$ after Tempei.

Star Cluster GC. 1295 after O. Lohse.

Star Cluster G.C. 4230 after Trouvelot.

QB Klein, Hermann Joseph 65 Star atlas containing K453 maps of all the stars 1901

P\&ASci

PLEASE DO NOT REMOVE CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

[^0]: April, 1901.

[^1]: Audromida, Andromeda.
 Aquarius, The Water-carries
 Aquila, The Eagle.
 Argo navis, The Ship Argo.
 Aries, The Ram.
 Auriga, the Waggoner.
 Bootes, Bootes.
 C'amelopardalis, The Giraffe.
 (innor, The Crab).
 ''umes rourtici, The Hommels.
 Cionis mujur, The lireat thes.
 Canis minor, The Little Dug.
 C'apricornus, The Goat.
 C'rissinguir, Cassiopecia.
 Centaurus, The Centair.
 Cipheris, Ciphern-

